K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2015

Bất đẳng thức cần chứng minh tương đương với \(\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4,\)  hay tương đương với
\(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4.\)

Bất đẳng thức cuối cùng đúng, và chứng minh như sau: Theo bất đẳng thức Cauchy-Schwartz ta có \(\frac{1}{b+c}+\frac{1}{a+d}\ge\frac{4}{\left(b+c\right)+\left(a+d\right)}=\frac{4}{a+b+c+d},\)  \(\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{\left(c+d\right)+\left(a+b\right)}=\frac{4}{a+b+c+d}.\)  Thành thử


\(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4.\)  (ĐPCM)

3 tháng 4 2023

Bài làm :

Ta có : \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\left(1\right)\)

Áp dụng BĐT (1) ta có :

\(\dfrac{a}{b+c}+\dfrac{c}{d+a}=\dfrac{a^2+ad+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\dfrac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)

Tương tự : \(\dfrac{b}{c+d}+\dfrac{d}{a+b}\ge\dfrac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(3\right)\)

Cộng các về của các BĐT (2) và (3) ta được :

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2\left(2a^2+2b^2+2c^2+2d^2+2ad+2bc+2ab+2cd\right)}{\left(a+b+c+d\right)^2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2]}{\left(a+b+c+d\right)^2}=2B\)

Ta dễ dàng chứng minh được : \(B\ge1\)

Thật vậy :

\(\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2}{\left(a+b+c+d\right)^2}\ge1\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(d+a\right)^2\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

\(\Rightarrowđpcm\)

Dấu đằng thức xảy ra : \(\Leftrightarrow a=c;b=d\)

3 tháng 4 2023

khó thế tui ko hỉu

 

19 tháng 8 2016

A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3 
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1) 
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1) 
áp dụng BĐT Cauchy cho 3 số dương: 
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] 
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự 
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)] 
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)] 
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)] 
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)] 
→ 1 ≥ 81abcd → abcd ≤ 1/81 

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

1 tháng 9 2016

 đặt   P=a/(b+c)+b/(c+d)+c/(d+a)+d/(a+b)

        Q=b/(b+c)+c/(c+d)+d/(d+a)+a/(a+b)

        R=c/(b+c)+d/(c+d)+a/(d+a)+b/(a+b)

        thì Q+R=4

        Ta có: P+Q=(a+b)/(b+c)+(b+c)/(c+d)+(c+d)/(d+a)+(d+a)/(a+b)≥4

          => P+R≥4

         Cộng 2 bđt trên ta được: 2P+Q+R≥8 hay P≥2

28 tháng 12 2015

 

\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)

=> VT >/ 2

Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)

28 tháng 12 2015

\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)

\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)

Dấu '' = '' xảy ra khi a = b + c+ d 

                              b = c+d+a 

                            c = b+a+d

                             d = a+b+c 

Hình như ko có a ; b; c ;d