K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

DD
3 tháng 5 2022

Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).

\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)

Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).

4 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)

Vậy .............

5 tháng 5 2020

Ta dễ có BĐT sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Khi đó \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{4}{3}\)

Đẳng thức xảy ra tại a=b=c=2/3

20 tháng 6 2023

 Vì \(a^2,b^2,c^2\ge0\) nên \(a^2+b^2+c^2\ge0\). ĐTXR \(\Leftrightarrow a=b=c=0\), thỏa mãn đk đề bài. Vậy GTNN của \(a^2+b^2+c^2\) là 0, xảy ra khi \(a=b=c=0\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Mà $a+b+c=3$ nên $a=b=c=1$

$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$

12 tháng 10 2021

a+b+c=3 nha (quên bổ sung)