K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

Với mọi a;b dương ta có:

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2=\dfrac{1}{2}\left(a^2+b^2\right).\left(a^2+b^2\right)\ge\dfrac{1}{2}.2ab.\left(a^2+b^2\right)=ab\left(a^2+b^2\right)\)

Và: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

Do đó:

\(A\le\sum\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+2020=\sum\dfrac{1}{a^2+b^2+1}+2020\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow A\le\sum\dfrac{1}{x^3+y^3+1}+2020\le\sum\dfrac{1}{xy\left(x+y\right)+1}+2020\)

\(A\le\sum\dfrac{xyz}{xy\left(x+y\right)+xyz}+2020=\sum\dfrac{z}{x+y+z}+2020=1+2020=2021\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 8 2020

Dễ thôi

Ta có:

\(ab+bc+ca+abc=4\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\) ( cái này cơ bản )

Theo AM - GM:

\(\left(a+b\right)^2+20=\left[\left(a+b\right)^2+4\right]+16\ge4\left(a+b\right)+16=4\left[\left(a+2\right)+\left(b+2\right)\right]\)

Áp dụng Cauchy Schwarz:

\(P\le\Sigma\frac{4}{4\left[\left(a+2\right)+\left(b+2\right)\right]}=\Sigma\frac{1}{\left(a+2\right)+\left(b+2\right)}\le\frac{1}{4}\Sigma\left(\frac{1}{a+2}+\frac{1}{b+2}\right)=\frac{1}{2}\)

Đẳng thức xảy ra tại a=b=c=1

6 tháng 8 2020

Bác Cool kid chỉ em biến đối đê :D

Bài này có thể biểu diễn dưới dạng tổng bình phương nhưng khá xấu. (Vào TKHĐ xem ảnh)

6 tháng 6 2023

 Bạn tham khảo bài này trên Quanda nha.loading...  

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Lời giải:

Đặt \((a+1,b+1,c+1)=(x,y,z)\Rightarrow (a,b,c)=(x-1,y-1,z-1)\)

Khi đó:
\(ab+bc+ac+abc=2\)

\(\Leftrightarrow (x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)+(x-1)(y-1)(z-1)=2\)

\(\Leftrightarrow xyz-(x+y+z)+2=2\Leftrightarrow xyz=x+y+z\)

Vậy bài toán trở thành: Cho $x,y,z>0$ thỏa mãn \(x+y+z=xyz\)

Tìm max \(P=\sum \frac{x}{x^2+1}\)

----------------------------------

Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)

\(\Rightarrow x(x+y+z)+yz=yz(x^2+1)\)

\(\Leftrightarrow (x+y)(x+z)=yz(x^2+1)\Rightarrow x^2+1=\frac{(x+y)(x+z)}{yz}\)

Do đó: \(\frac{x}{x^2+1}=\frac{x}{\frac{(x+y)(x+z)}{yz}}=\frac{xyz}{(x+y)(x+z)}\)

\(\Rightarrow P=\sum \frac{x}{x^2+1}=\sum \frac{xyz}{(x+y)(x+z)}=\frac{2xyz(x+y+z)}{(x+y)(y+z)(x+z)}\)

Theo BĐT AM-GM:

\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\)

\(\geq (x+y+z).(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}=\frac{8}{9}(x+y+z)(xy+yz+xz)\)

\(\Rightarrow P\leq \frac{2xyz(x+y+z)}{\frac{8}{9}(x+y+z)(xy+yz+xz)}=\frac{9}{4}.\frac{xyz}{xy+yz+xz}(*)\)

Mà: \((xy+yz+xz)^2\geq 3xyz(x+y+z)=3(xyz)^2\)

\(\Rightarrow xy+yz+xz\geq \sqrt{3}xyz(**)\)

Từ \((*);(**)\Rightarrow P\leq \frac{9}{4}.\frac{1}{\sqrt{3}}=\frac{3\sqrt{3}}{4}\). Vậy \(P_{\max}=\frac{3\sqrt{3}}{4}\)

NV
3 tháng 5 2021

\(P\le\dfrac{a}{2\sqrt{a^2bc}}+\dfrac{b}{2\sqrt{b^2ca}}+\dfrac{c}{2\sqrt{c^2ab}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\right)\)

\(P\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)=\dfrac{1}{2}\left(\dfrac{ab+bc+ca}{abc}\right)\le\dfrac{1}{2}\left(\dfrac{a^2+b^2+c^2}{abc}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

3 tháng 5 2021

Áp dụng cosi:

`a^2+bc>=2a\sqrt{bc}`

Hoàn toàn tương tự:

`=>P<=1/2(1/sqrt{ab}+1/sqrt{bc}+1/sqrt{ca})`

Áp dụng cosi:

`1/a+1/b+1/c>=1/sqrt(ab)+1/sqrt(bc)+1/sqrt(ca)`

`=>P<=1/2(1/a+1/b+1/c)`

`=>P<=1/2((ab+bc+ca)/(abc))<=(a^2+b^2+c^2)/(2(abc))=1/2`

Dấu "=" `<=>a=b=c=3`

\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)

\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)

=>P<=1/a+1/b+1/c=3

Dấu = xảy ra khi a=b=c=1

NV
12 tháng 5 2021

Đề bài có nhầm lẫn gì ko nhỉ?

\(T=\dfrac{ab}{a^2+b^2+ab}+\dfrac{bc}{b^2+c^2+2bc}+\dfrac{ca}{c^2+a^2+ca}\le\dfrac{ab}{2ab+ab}+\dfrac{bc}{2bc+bc}+\dfrac{ca}{2ca+ca}=1\)

13 tháng 5 2021

kh bt nx

 

NV
27 tháng 12 2022

\(\dfrac{4}{3}\le a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt[]{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}\)

\(\le a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)=\dfrac{4}{3}\left(a+b+c\right)\)

\(\Rightarrow Q\ge1\)

\(Q_{min}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)

1 tháng 11 2021

Theo tớ là tìm Min chứ nhỉ ??

NV
1 tháng 11 2021

\(ab\left(a+b\right)=a^2+b^2-ab\Rightarrow ab=\dfrac{a^2+b^2-ab}{a+b}\)

\(A=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{a^3b^3}=\dfrac{\left(a+b\right)ab\left(a+b\right)}{a^3b^3}=\dfrac{\left(a+b\right)^2}{a^2b^2}\)

\(=\left(\dfrac{a+b}{ab}\right)^2=\left(\dfrac{a+b}{\dfrac{a^2+b^2-ab}{a+b}}\right)^2=\left(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\right)^2\)

Ta có: \(a^2+b^2-ab>0;\forall a;b\ne0\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\ge0\)

\(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}=\dfrac{a^2+b^2+2ab}{a^2+b^2-ab}=\dfrac{4\left(a^2+b^2-ab\right)-3\left(a^2+b^2-2ab\right)}{a^2+b^2-ab}=4-\dfrac{3\left(a-b\right)^2}{a^2+b^2-ab}\le4\)

\(\Rightarrow0\le\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\le4\)

\(\Rightarrow A\le16\)

\(A_{max}=16\) khi \(a=b=\dfrac{1}{2}\)