K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

20 tháng 8 2016

3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)

Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\);  \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)

Cộng vế với vế các bất đẳng thức cùng chiều ta được: 

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )

dấu " = " xẩy ra khi a = b = c > 0

30 tháng 11 2019

Nguyễn Việt Lâm anh làm bài này giúp em với ạ

30 tháng 11 2019

Akai Haruma giúp em bài trên với ạ

21 tháng 8 2020

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)

Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)

\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)

Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)

Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)

Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)

Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)

\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 8 2020

Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

19 tháng 11 2019

Đặt \(x=\frac{b+c}{a}>0\) .Ta cần CM:

\(\sqrt{1+x^3}\le1+\frac{1}{2}x^2\Leftrightarrow\left(x^2+2\right)^2\ge4\left(x^3+1\right)\)

\(\Leftrightarrow x^4-4x^3+4x^2\ge0\Leftrightarrow x^2\left(x-2\right)^2\ge0\)

BĐT cuối đúng => đpcm 

ĐT xảy ra<=> \(b+c=2a\)

19 tháng 11 2019

Làm tiếp:) 

Ta có: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2};\)

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế 3 BĐT trên ta đc đpcm .

ĐT xảy ra<=> a=b=c