K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Dự đoán Max P = 81 nên ta chứng minh: \(P\le81=\left(a+b+c\right)^4\)

Ta có: \(P=a^4+b^4+c^4-3abc\le a^4+b^4+c^4+78abc\)

\(=a^4+b^4+c^4+26\left(a+b+c\right)abc\)

Vậy ta chứng minh: \(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

SOS là ra rồi :DD

1 tháng 1 2020

Chứng minh:\(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

Giả sử \(a=max\left\{a,b,c\right\}\).Xét hiệu: 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị.

7 tháng 9 2023

Trước tiên ta đi chứng minh BĐT phụ là:

Với �,�>0 thì �2+�4≥��(�2+�2)

Cách CM:

BĐT trên tương đương với: (�−�)2(�2+��+�2)≥0 (luôn đúng)

Quay trở về bài toán chính: Áp dụng BĐT phụ trên :

⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)

Dấu bằng xảy ra khi a=b=c=1

7 tháng 9 2023

loading...

Nó bị mất cái dấu gạch ngang chỗ phân số nha b

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

Đặt $\sqrt{4-a^2}=x; \sqrt{4-b^2}=y; \sqrt{4-c^2}=z$ thì bài toán trở thành:

Cho $x,y,z\in [0;2]$ thỏa mãn $x^2+y^2+z^2=6$. Tìm min: $P=x+y+z$

-------------------

Ta có: $P^2=x^2+y^2+z^2+2(xy+yz+xz)=6+2(xy+yz+xz)$

Vì $x,y,z\in [0;2]$ nên:

$(x-2)(y-2)(z-2)\leq 0\Leftrightarrow 2(xy+yz+xz)\geq xyz+4(x+y+z)-8\geq 4(x+y+z)-8=4P-8$

Vậy $P^2=6+2(xy+yz+xz)\geq 6+4P-8$

$\Leftrightarrow P^2-4P+2\geq 0$

$\Leftrightarrow (P-2)^2\geq 2\Rightarrow P\geq 2+\sqrt{2}$.

Vậy $P_{\min}=2+\sqrt{2}$.

Dấu "=" xảy ra khi $(a,b,c)=(0,2,\sqrt{2})$ và hoán vị

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:

$a\leq 12a$

$2b^2=2b.b\leq 4b\leq 12b$

$3c^3=3c^2.c\leq 3.2^2.c=12c$

$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$

5 tháng 12 2019

\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)

\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)

\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)

\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)

\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)

\(\Rightarrow B\ge1\)

1 tháng 7 2020

\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)

\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)

\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)

\(\le\Sigma\frac{1}{ab+a+b}\)

Đến đây bí :( 

23 tháng 4 2022

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24