K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)

6 tháng 3 2020

Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được

\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))

\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

7 tháng 7 2018

Từ giả thiết:\(ab+bc+ca=3\Rightarrow\left(ab+bc+ca\right)^2=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=9-2abc\left(a+b+c\right)\)

Ta có:\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\)\(=\frac{1}{\frac{2a^2+bc}{a}}+\frac{1}{\frac{2b^2+ca}{b}}+\frac{1}{\frac{2c^2+ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2a+\frac{bc}{a}+2b+\frac{ca}{b}+2c+\frac{ab}{c}}=\frac{9}{2a+2b+2c+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}}\)

\(=\frac{9}{2a+2b+2c+\frac{b^2c^2+c^2a^2+a^2b^2}{abc}}=\frac{9}{2a+2b+2c+\frac{9-2abc\left(a+b+c\right)}{abc}}\)

\(=\frac{9}{2a+2b+2c+\frac{9}{abc}-2\left(a+b+c\right)}=\frac{9}{\frac{9}{abc}}=abc\)

Dấu "=" xảy ra khi 

\(\frac{2a^2+bc}{a}=\frac{2b^2+ca}{b}=\frac{2c^2+ab}{c}=\frac{2a^2+bc-2b^2-ca}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)-c\left(a-b\right)}{a-b}\)

\(=2\left(a+b\right)-c\).Tương tự ta có:\(2\left(a+b\right)-c=2\left(b+c\right)-a=2\left(c+a\right)-b\)

\(\Leftrightarrow a+b=b+c=c+a\)

\(\Leftrightarrow a=b=c\)

11 tháng 5 2018

Áp dụng BĐT Bunhiacopxki, ta có: 

\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)

Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)

\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\) 

\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

11 tháng 5 2018

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

ta có  \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)

áp dụng bất đẳng thức bunhiacopxki  ta có 

\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)

\(\Rightarrow H\ge\frac{1}{a+b+c}\)

hay  \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm