K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Một cách khác mà hôm nay ngủ dạy lại nghĩ ra :))

Áp dụng liên tiếp BĐT Svacxo cho 3 các số dương ta được :

\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\)

\(=\frac{\left(a+b\right)^4}{1}+\frac{\left(b+c\right)^4}{1}+\frac{\left(c+a\right)^4}{1}\ge\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{1+1+1}\)

\(=\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{3}=\frac{\left[\frac{\left(a+b\right)^2}{1}+\frac{\left(b+c\right)^2}{1}+\frac{\left(c+a\right)^2}{1}\right]^2}{3}\)

\(\ge\frac{\left[\frac{\left(a+b+b+c+c+a\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{2^2}{3}\right)^2}{3}=\frac{16}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

31 tháng 8 2020

Ta đi chứng minh BĐT : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) 

BĐT trên tương đương : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( Đúng )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

+) Ta xét : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\) (*)

Lại có : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Nên từ (*) suy ra \(x^4+y^4+z^4\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{3}=\frac{\left(x+y+z\right)^4}{27}\)

Áp dụng vào bài toán với \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\) ta có :

\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\ge\frac{\left(a+b+b+c+c+a\right)^4}{27}=\frac{2^4}{27}=\frac{16}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy BĐT được chứng minh !

.

30 tháng 6 2018

Bài 2:

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

Lại áp dụng tương tự ta có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

30 tháng 6 2018

Bài 1:

Áp dụng BĐT Cô -si, ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng vế theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

p/s: không chắc lắm, có gì sai xót xin giúp đỡ

7 tháng 8 2015

Áp dụng Côsi:

\(a^4+a^4+a^4+1\ge4\sqrt[4]{\left(a^4\right)^3}=4a^3\)

\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-1\)

Ta chứng minh: \(a^3+b^3+c^3+d^3\ge4\)

Theo Côsi: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)

\(\Rightarrow a^3+b^3+c^3+d^3+2.4\ge3\left(a+b+c+d\right)=3.4\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\)

\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-4\ge3\left(a^3+b^3+c^3+d^3\right)\)

\(\Rightarrow a^4+b^4+c^4+d^4\ge a^3+b^3+c^3+d^3\)

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!

17 tháng 7 2018

Ta có:

\(\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\Leftrightarrow\dfrac{3a\left(a+b\right)+3b\left(a+b\right)-12ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3a^2+3ab+3ab+3b^2-12ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3a^2+3b^2-6ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng)

Tương tự ta có:

\(\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế (1) (2)(3) ta được:

\(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{12}{a+b}+\dfrac{8}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)

a: \(\overrightarrow{AB}=\left(1;3\right)\)

\(\overrightarrow{AC}=\left(2;6\right)\)

\(\overrightarrow{AD}=\left(2,5;7,5\right)\)

Vì \(\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}\)

nên A,B,C thẳng hàng(1)

Vì \(\overrightarrow{AD}=\dfrac{5}{2}\overrightarrow{AB}\)

nên A,B,D thẳng hàng(2)

Từ (1) và (2) suy ra A,B,C,D thẳng hàng

b: \(\overrightarrow{AB}=\left(-5-x;6\right)\)

\(\overrightarrow{AC}=\left(7-x;-30\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{-5-x}{7-x}=\dfrac{6}{-30}=\dfrac{-1}{5}\)

=>-5x-25=x-7

=>-6x=18

hay x=-3

NV
21 tháng 8 2021

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 8 2021

thx, appreciate it

29 tháng 10 2017

Giả thiết ngứa mắt vc , let's biến đổi chút 

\(GT\Leftrightarrow\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\). Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b};\frac{1-c}{c}\right)\rightarrow\left(x;y;z\right)\)

thì \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

nên bài toán đã cho trở thành \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\left(xyz=1\right)\)

để ý rằng \(VT\ge\frac{1}{2\left(x^2+1\right)}+\frac{1}{2\left(y^2+1\right)}+\frac{1}{2\left(z^2+1\right)}\)

nên chỉ cần chứng minh \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{2}\left(xyz=1\right)\)

29 tháng 10 2017

bất đẳng thức dưới cùng chứng minh như thế nào bn