K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

ta có: (a+b)4\(\ge\)16ab(a-b)2

\(\Leftrightarrow\)a+ 4ab+ 4a3b + b4\(\ge\)16ab(a- 2ab + b2)

\(\Leftrightarrow\)a+ 4ab+ 4a3b + b4\(\ge\)16a3b - 32a2b2 + 16ab3

\(\Leftrightarrow\)a4 - 12a3b + 38a2b2 - 12ab3 + b4 \(\ge\)0

\(\Leftrightarrow\)(a2 - 6ab + b2)2 \(\ge\)0 (luôn đúng)Vậy

\(\left(a+b\right)^4\ge16ab\left(a-b\right)^2\)

\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16ab\left(a^2-2ab+b^2\right)\)

​​\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16a^3b-32a^2b^2+16ab^3\)

\(\Leftrightarrow a^4-12a^3b+38a^2b^2-12ab^3+b^4\ge0\)

\(\Leftrightarrow\left(a^2\right)^2-\left(b^2\right)^2+\left(6ab\right)^2+2a^2b^2-2.6aba^2-2.6abb^2\ge0\) 

\(\Leftrightarrow\left(a^2-6ab+b^2\right)^2\ge0\)( luôn đúng )

Vậy ....

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 12 2018

AM-GM là gì z bn

NV
17 tháng 12 2020

\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)

\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 1 2020

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dúng bất đẳng thức Bunhiacopxki ta có : 

\(VT\ge\left(\sqrt{a}.\frac{\sqrt{a}}{b+c}+\sqrt{b}.\frac{\sqrt{b}}{c+a}+\sqrt{c}.\frac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Xét \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức ta có :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow VT\ge\frac{9}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

29 tháng 6 2018

\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\)\(\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(\Leftrightarrow a^{10}b^2+a^2b^{10}\ge a^8b^4+a^4b^8\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+a^2b^6\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^6-b^6\right)\ge0\)

Vì a^2-b^2 va a^6-b^6 cùng dấu nên ta có điều phải chứng minh.

29 tháng 6 2018

bn có thể giải rõ hơn ko?

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)