K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2021

\(\Leftrightarrow\left(a+c\right)^2+b^2+2b\left(a+c\right)+\left(a+c\right)^2+b^2-2b\left(a+c\right)>4b^2\)

\(\Leftrightarrow\left(a+c\right)^2>b^2\)

\(\Leftrightarrow a+c>b\) (luôn đúng theo BĐT tam giác)

Vậy BĐT đã cho được chứng minh

18 tháng 8 2021

ta có a+c>b suy ra (a+b+c)^2>4b^2 suy ra (a+b+c)^2+(a-b+c)^2>(a+b+c)^2>4b^2

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$

Áp dụng BĐT AM-GM:

$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$

$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên: 

$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$

$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)

Ta có đpcm.

4 tháng 9 2020

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)

Bất đẳng thức được chứng minh 

4 tháng 9 2020

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

7 tháng 11 2021

\(A=\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{3}{c+a-b}+\dfrac{3}{a+b-c}+\dfrac{2}{b+c-a}+\dfrac{2}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(=3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)

\(do\) \(a,b,c\) \(là\) \(độ\) \(dài\) \(3\) \(cạnh\) \(\Delta\Rightarrow a,b,c\) \(không\) \(âm\) \(\) 

\(và\left\{{}\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrowáp\) \(dụng\) \(Am-GM\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge3.\dfrac{4}{c+a-b+a+b-c}\ge\dfrac{12}{2a}\ge\dfrac{6}{a}\\2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)\ge2.\dfrac{4}{b+c-a+a+b-c}\ge\dfrac{8}{2b}\ge\dfrac{4}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\end{matrix}\right.\)

\(\Rightarrow A\ge\dfrac{6}{a}+\dfrac{4}{b}+\dfrac{2}{c}\)

24 tháng 7 2020

giả sử a+b+c=k>0; đặt a=kx; b=ky; c=kz => x;y;z>0 và x+y+z=1

khi đó P=k\(\left[\frac{k\left(3x-y\right)}{k^2\left(x^2+xy\right)}+\frac{k\left(3y-z\right)}{k^2\left(y^2+yz\right)}+\frac{k\left(3z-x\right)}{k^2\left(z^2+zx\right)}\right]=\frac{3x-y}{x^2+xy}+\frac{3y-z}{x^2+xy}+\frac{3z-x}{z^2+zx}\)

\(=\frac{4x-\left(x+y\right)}{x\left(x+y\right)}+\frac{4y-\left(y+z\right)}{y\left(y+z\right)}+\frac{4z-\left(z+x\right)}{z\left(z+x\right)}=\frac{4}{x+y}-\frac{1}{x}+\frac{4}{y+z}-\frac{1}{y}+\frac{4}{z+x}-\frac{1}{z}\)

\(=\frac{4}{1-z}-\frac{1}{x}+\frac{1}{1-x}+\frac{1}{y}+\frac{1}{1-y}+\frac{1}{z}=\frac{5x-1}{x-x^2}+\frac{5y-1}{y-y^2}+\frac{5z-1}{z-z^2}\)

do a,b,c là 3 cạnh của 1 tam giác => b+c>a =>y+z>x => 1-x>x

=> x<1/2 tức là a\(\in\left(0;\frac{1}{2}\right)\)tương tự ta cũng có: \(y;z\in\left(0;\frac{1}{2}\right)\)

ta sẽ chứng minh \(\frac{5t-1}{t-t^2}\le18t-3\)(*) đúng với mọi \(\in\left(0;\frac{1}{2}\right)\)

thật vậy (*) \(\Leftrightarrow\frac{5t-1}{t-t^2}-18t+3\le0\Leftrightarrow\frac{18t-21t^2+8t-1}{t-t^2}\le0\Leftrightarrow\frac{\left(2t-1\right)\left(3t-1\right)^2}{t\left(t-1\right)}\le0\)(**)

(**) hiển nhiên đúng với mọi \(t\in\left(0;\frac{1}{2}\right)\)do đó (*) đúng với mọi \(t\in\left(0;\frac{1}{2}\right)\)

áp dụng (*) ta được \(P\le18x-3+18y-3=18\left(x+y+z\right)-9=9\)

dấu "=" xảy ra <=> x=y=z=1/<=> a=b=c

29 tháng 7 2020

@Hai Ngox: Sao phải giả sử a +  b + c = k > 0 vậy bạn? Vì a,b,c là độ dài 3 cạnh của tam giác thì đó là hiển nhiên.

Ngoài ra:

Nó tương đương với \(\Sigma c^2\left(b+c\right)\left(a+c\right)\left(a-b\right)^2\ge0\) (1)

Hoặc \(\Sigma a^4\left(b-c\right)^2+\frac{1}{3}\left(ab+bc+ca\right)\Sigma\left(2ab-bc-ca\right)^2\ge0\) (2)

Nhận xét. Phân tích (2) cho ta thấy, bất đẳng thức \(\left(a+b+c\right)\left(\frac{3a-b}{a^2+ab}+\frac{3b-c}{b^2+bc}+\frac{3c-a}{c^2+ca}\right)\le9\)

đúng với mọi a, b, c là số thực thỏa mãn \(ab+bc+ca\ge0.\)

22 tháng 7 2015

\(CMR:a^2-b^2-c^2+2bc>0\)

            <=>\(\left(a-b-c\right)^2+2ab-2bc+2ac+2bc>0\)

            <=>\(\left(a-b-c\right)^2+2ac+2ab>0\) ,(a,b,c >0) dfcm