K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

\(\frac{a+c}{ac}=\frac{2}{b}\) => \(b=\frac{2ac}{a+c}\) thay vào BĐT cần chứng minh, ta được:

\(\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}\)

\(=\frac{2a^2c^2+3a^3c+3ac^3}{2a^2c^2}\ge4\)

<=> 3a3c-6a2c2+3ac3 ≥ 0

<=> 3ac(a-c)2 ≥ 0 luôn đúng ∀ a,c > 0

Vậy BĐT được chứng minh, đẳng thức xảy ra khi và chỉ khi a=c; b≠0

5 tháng 6 2019

#)Bạn tham khảo câu ngay dưới câu hỏi của bạn nhé ^^

5 tháng 6 2019

tham khảo nhé :)

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)\(\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\)\(\Leftrightarrow b=\frac{2ac}{a+c}\)

Ta có : \(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{a\left(a+3c\right)}{2a^2}=\frac{a+3c}{2a}\)

tương tự : \(\frac{b+c}{2c-b}=\frac{c+3a}{2c}\)

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+3.2ac}{2ac}=\frac{8ac}{2ac}=4\)

6 tháng 4 2017

từ cái đã cho suy ra được \(\frac{2a-b}{ab}=\frac{1}{c}\Rightarrow2a-b=\frac{ab}{c}\)

Chứng minh tương tự =>2c-b=bc/a

Đặt \(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\)

\(=c\left(\frac{1}{a}+\frac{1}{b}\right)+a\left(\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)Cái này tự chứng minh nhé

Dấu = xảy ra khi a=b=c

16 tháng 2 2021

Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)

Khi đó:

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}\)

\(=\frac{a\left(a+c\right)+2ac}{2a\left(a+c\right)-2ac}+\frac{c\left(a+c\right)+2ac}{2c\left(a+c\right)-2ac}\)

\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=\frac{a^2}{2a^2}+\frac{3ac}{2a^2}+\frac{c^2}{2c^2}+\frac{3ac}{2c^2}\)

\(=\frac{1}{2}+\frac{3c}{2a}+\frac{1}{2}+\frac{3a}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\)

\(\ge1+\frac{3}{2}\cdot2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=1+3=4\) (Cauchy)

Dấu "=" xảy ra khi: \(a=b=c\)

7 tháng 3 2019

Ta có : \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}=\frac{a^2+3ac}{2a^2}=\frac{a+3c}{2a}\left(1\right)\)

\(\frac{c+b}{2c-b}=\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}=\frac{c^2+3ac}{2c^2}=\frac{c+3a}{2c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) có : \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{ac+3c^2+ac+3a^2}{2ac}=\frac{3\left(c^2+a^2\right)+2ac}{2ac}\)

Áp dụng BĐT Cauchy cho a ; c dương , ta có :

\(c^2+a^2\ge2ac\Rightarrow\frac{3\left(c^2+a^2\right)+2ac}{2ac}\ge\frac{3.2ac+2ac}{2ac}=4\)

Dấu " = " xảy ra \(\Leftrightarrow a=c\)

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\) \(\Rightarrow\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=c\)

Vậy ...

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
17 tháng 2 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Rightarrow ab+bc+ca=0\)

Chứng minh đẳng thức này mà áp dụng:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Khi đó

\(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)

\(=\frac{\left(a^3b^3+b^3c^3+c^3a^3\right)}{abc}=\frac{3a^2b^2c^2}{abc}=3abc\) Do ab+bc+ca=0

18 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

a3/b+2c + b3/c+2a + c3/a+2b = a4/ab+2ac + b4/bc+2ab + c4/ac+2bc\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\frac{1}{3\left(ab+bc+ca\right)}\)\(\ge\frac{1}{3\left(a^2+b^2+c^2\right)}=\frac{1}{3}\left(ĐPCM\right)\)