K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)

10 tháng 2 2022

- Theo giả thiết  a,b>0  nên áp dụng bất đẳng thức Cô si ta được

                a^4+b^2\ge2a^2b\Rightarrow a^4+2ab^2+b^2\ge2a^2b+2ab^2

                                                 \Rightarrow a^4+2ab^2+b^2\ge2ab\left(a+b\right)

                                                 \Rightarrow\frac{1}{a^4+2ab^2+b^2}\le\frac{1}{2ab\left(a+b\right)},  (đẳng thức xảy ra khi và chỉ khi a=b)

- Tương tự                                   \frac{1}{a^2+2a^2b+b^4}\le\frac{1}{2ab\left(a+b\right)}    ,    (đẳng thức xảy ra khi và chỉ khi  a=b)

- Từ đó      Q\le\frac{1}{ab\left(a+b\right)}

- Giả thiết  \left(a+b\right)\left(a+b-1\right)=a^2+b^2 tương đương với a+b=2ab\Leftrightarrow ab=\frac{a+b}{2}(*)

- Do đó      Q\le\frac{2}{\left(a+b\right)^2}

  - Mà      ab\le\frac{\left(a+b\right)^2}{4}    nên   \frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge2  (do giả thiết  a,b>0 ).

- Vì vậy   Q\le\frac{2}{2^2} 

GTNN  là  \frac{1}{2} đạt khi và chỉ khi \left\{{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.\Leftrightarrow a=b=1

   
10 tháng 2 2022

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)

24 tháng 5 2019

\(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

=> \(2ab=a+b\)

Mà \(2ab\le\frac{\left(a+b\right)^2}{2}\)

=> \(a+b\ge2\)

Ta có

\(a^4+b^2\ge2a^2b\)

\(b^4+a^2\ge2ab^2\)

Khi đó \(Q\le\frac{1}{2ab\left(a+b\right)}+\frac{1}{2ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)

Vậy \(MaxQ=\frac{1}{2}\)khi a=b=1

29 tháng 5 2018

Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)

\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)

NV
26 tháng 5 2019

\(\frac{1}{a}+\frac{1}{b}=2\Rightarrow ab=\frac{a+b}{2}\Rightarrow\frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge2\)

\(Q\le\frac{1}{2\sqrt{a^4b^2}+2ab^2}+\frac{1}{2\sqrt{a^2b^4}+2a^2b}=\frac{1}{ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)

\(\Rightarrow Q_{max}=\frac{1}{2}\) khi \(a=b=1\)

26 tháng 5 2019

bạn dùng pp nào vậy có thể giảng cho mình đc không @@Nguyễn Việt Lâm

6 tháng 7 2020

Đề thi tuyển sinh chuyên Khoa học tự nhiên-Đại Học quốc gia Hà Nội năm học 2017-2018

ta có: \(ab+bc+ca+abc=2\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left(1+a\right)+\left(1+b\right)+\left(1+c\right)\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)}+\frac{1}{\left(1+b\right)\left(1+c\right)}+\frac{1}{\left(1+c\right)\left(1+a\right)}=1\)

đặt \(x=\frac{1}{1+a};y=\frac{1}{1+b};z=\frac{1}{1+c}\Rightarrow xy+yz+xz=1\)

ta có \(P=\frac{a+1}{\left(a+1\right)^2+1}+\frac{b+1}{\left(b+1\right)^2+1}+\frac{c+1}{\left(c+1\right)^2+1}\)

\(=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}+\frac{\frac{1}{y}}{\frac{1}{y^2}+1}+\frac{\frac{1}{z}}{\frac{1}{z^2}+1}=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)

\(=\frac{x}{\left(x+y\right)\left(y+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+y\right)\left(z+x\right)}\)

\(=\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

mà \(9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+z+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\ge6xyz\)(đúng vì theo BĐT Cosi)

\(\Rightarrow P\le\frac{2}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3}}=\frac{3\sqrt{3}}{4}\)

(vì \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\))

Vậy \(P_{max}=\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}-1\)

24 tháng 12 2021

Khúc đầu là: \(\dfrac{1}{a^4+b^2+2b^2}\) hay \(\dfrac{1}{a^4+b^2+2ab^2}\) ??

24 tháng 12 2021

\(2a^2b\) không phải \(2ab^2\)

18 tháng 2 2020

Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)

Chú ý: \(2ab=12-a-b\) . Do đó:

\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)

\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)

\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)

P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.

18 tháng 2 2020

Cách khác:

Dễ thấy \(0< ab\le4\) (như bài trên)

\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)

P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2