K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :

Áp dụng BĐT Cauchy cho hai số a,b dương ta có :

\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)

\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)

Nhân vế với vế của BĐT (1) và (2) ta được :

\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)

2 tháng 1 2020

chị cảm ơn nhé lớp 8 thế là giỏi rồi

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

NV
12 tháng 2 2020

\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

13 tháng 8 2020

đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

áp dụng bđt Bunhiacopxki dạng phân thức ta được

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)

phép chứng minh sẽ hoàn tất nếu ta chứng minh được

\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

hay ta cần chứng minh

\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)

khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
7 tháng 11 2019

Trần Huy tâm: Nếu đề sửa như bạn nói thì làm ntn nha:

Theo bài ra ta có:

\(2(a^3+b^3+c^3)=a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\)

\(\Leftrightarrow 2(a^3+b^3+c^3)=ab(a+b)+bc(b+c)+ca(c+a)\)

\(\Leftrightarrow [a^3+b^3-ab(a+b)]+[b^3+c^3-bc(b+c)]+[c^3+a^3-ca(c+a)]=0\)

\(\Leftrightarrow [a^2(a-b)-b^2(a-b)]+[b^2(b-c)-c^2(b-c)]+[c^2(c-a)-a^2(c-a)]=0\)

\(\Leftrightarrow (a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)=0\)

Ta thấy với mọi $a,b,c$ là 3 cạnh tam giác thì $(a-b)^2(a+b); (b-c)^2(b+c); (c-a)^2(c+a)\geq 0$

Do đó để tổng của chúng bằng $0$ thì $(a-b)^2(a+b)=(b-c)^2(b+c)=(c-a)^2(c+a)=0$

$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$ (do $a+b,b+c,c+a\neq 0$)

$\Rightarrow a=b=c$

Hay tam giác $ABC$ đều. Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bạn xem lại đề xem có thiếu điều kiện gì không? 2 vế trong ĐKĐB không cùng bậc nên nếu không có thêm đk gì thì làm sao chứng minh được tam giác đều?

6 tháng 12 2019

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}a\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}a-\frac{1}{8}b-\frac{1}{8}-\frac{1}{4}\)

\(\Sigma\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) :) 

a: Điều kiện cần và đủ để n2 chia hết cho 5 là n chia hết cho 5

Vì nếu n chia hết cho 5 thì n=5k

\(n^2=25k^2=5\cdot5k^2⋮5\)

b: Điều kiện cần và đủ để n2 chia hết cho 5 là n2+1 không chia hết cho5 và n2-1 không chia hết cho 5