K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

(ab)^2=(a+b)^3 
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số 
(ab) = 27 hoặc 64 
chỉ có 27 thỏa mãn 
vậy (ab)=27

24 tháng 10 2017
bằng27
21 tháng 11 2023

 Xét \(n>3\), khi đó \(n⋮̸3\), dẫn đến \(n^{2024}\) chia 3 dư 1 (số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nhưng do n không chia hết cho 3 nên chỉ có thể suy ra \(n^{2024}\) chia 3 dư 1)

 Suy ra \(n^{2024}+1\) chia 3 dư 2. Do đó nó không thể là số chính phương.

 Xét \(n=2\), khi đó \(2^{2024}+1=\left(2^{1012}\right)^2+1>\left(2^{1012}\right)^2\) 

 Đồng thời \(\left(2^{1012}\right)^2+1< \left(2^{1012}\right)^2+2.2^{1012}+1=\left(2^{1012}+1\right)^2\)

 Do đó \(\left(2^{1012}\right)^2< 2^{2024}+1< \left(2^{1012}+1\right)^2\), hay \(2^{2024}+1\) không thể là số chính phương.

 Xét \(n=3\), khi đó \(3^{2024}+1=\left(3^{1012}\right)^2+1>\left(3^{1012}\right)^2\)

 Và \(\left(3^{1012}\right)^2+1< \left(3^{1012}\right)^2+2.3^{1012}+1=\left(3^{1012}+1\right)^2\)

 Do đó \(\left(3^{1012}\right)^2< 3^{2024}+1< \left(3^{1012}+1\right)^2\), hay \(3^{2024}+1\) không thể là số chính phương.

 Vậy, với mọi số nguyên tố \(n\) thì \(n^{2024}+1\) không thể là số chính phương.

1 tháng 8 2019

Câu c bạn tham khảo tại đây:

Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath

29 tháng 11 2021

bbbbbbbbbbbbbbbbbbbbbbb