K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

3A= 1x2x3 + 2x3x3 +3x4x3 + ... + 98x99x3

3A=1x2x3 +2x3x(4-1) +3x4x(5-1) + ... + 98x99x(100-97)

3A= 1x2x3+ 2x3x4 -1x2x3 +3x4x5 - 2x3x4 + ... + 98x99x100 - 97x98x99

3A = 98 x 99 x 100

3A = 970200

A = 323400

18 tháng 3 2023

g

15 tháng 5 2018

Giải:

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(\Leftrightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=9.\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{891}{100}\)

Vậy ...

3 tháng 9 2018

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

#

3 tháng 9 2018

\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3.4.....98.99}{2.3.4.5.....99.100}\)

\(=\frac{1}{100}\)

9 tháng 7 2017

Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)

\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)

\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)

\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)

\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)

\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)

\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)

Áp dụng vào B ta được:

\(B=100.101.201:6-4.50.51.101:6=166650\)

\(\Rightarrow A=166650+\left(200+2\right).100:2\)

\(\Rightarrow A=166650+10100=176750\)

Vậy A = 176750

Chúc bạn học tốt!!

10 tháng 5 2020

Bài 1: Tính hợp lý (nếu có thể)

a) (-193)+36+14+193

=[(-193)+193]+(36+14)

=50

b) 2008-(127+2008)+(-35+127)

=2008-127-2008-35+127

=(2008-2008)+(127-127)-35

=-35

c) (273-28)+(129-72)

=273-28+129-72

=302

d) 21×35-5×11×7

=21.35-11.35

=(21-11).35

=10.35=350

e) (-13)×34-87×34

=34(-13-87)

=34.(-100)

=-3400

f) 85×(35-27)-35×(85-27)

=85.35-85.27-35.85+35.27

=(85.35-35.85)+27(-85+35)

=0+27.(-50)=-1350

g) 1-2-3+4+5-6-7+…+97-98-99+100

=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100) *

Dãy trên có 100 số hạng chia thành 25 nhóm mỗi nhóm 4 số hạng mối nhóm đều có kết quả bằng 0

*=0+0+..+0( 25 số hạng)=0

h) A=2100-299-298-....-22-2-1

2A=2101-2100-299-...-23-22-2

⇒2A-A=(2101-2100-299-...-23-22-2)-(2100-299-298-....-22-2-1)

⇒A=2101-2100-299-...-23-22-2-2100+299+298+....+22+2+1

⇒A=2101-2.2100+1

⇒A=2101-2101+1

⇒A=0+1=1

22 tháng 10 2017

\((1+\dfrac{1}{100})\)\((1+\dfrac{1}{99})\)...\((1+\dfrac{1}{2})\)

= \(\dfrac{101}{100}\).\(\dfrac{100}{99}\).\(\dfrac{99}{98}\).....\(\dfrac{3}{2}\) = \(\dfrac{101}{2}\)

AH
Akai Haruma
Giáo viên
28 tháng 1

Câu 1:

$B=\frac{10}{1.3}+\frac{10}{3.5}+\frac{10}{5.7}+...+\frac{10}{101.103}$

$B=5(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103})$

$=5(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{103-101}{101.103})$

$=5(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103})$

$=5(1-\frac{1}{103})=5.\frac{102}{103}=\frac{510}{103}$

AH
Akai Haruma
Giáo viên
28 tháng 1

Câu 2:

\(C=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{2022.2024}\\ =\frac{1}{2}\left[\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2022.2024}\right]\)

\(=\frac{1}{2}\left[\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2024-2022}{2022.2024}\right]\)

\(=\frac{1}{2}(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2022}-\frac{1}{2024})\\ =\frac{1}{2}(\frac{1}{2}-\frac{1}{2024})=\frac{1011}{4048}\)

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

19 tháng 3 2019

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)

\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x........x\frac{99}{100}\)

\(\frac{1x2x3x4x........x99}{2x3x4x5x.......x100}\)

=> \(\frac{1}{100}\)

g: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{19}{20}=\dfrac{1}{20}\)

h: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot..\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)

f: \(A=1+\dfrac{1}{2^{2014}}\)

\(B=\dfrac{2^{2014}+1+1}{2^{2014}+1}=1+\dfrac{1}{2^{2014}+1}\)

mà \(2^{2014}< 2^{2014}+1\)

nên A>B