K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

                                                 Giải

ab + bc + ca = abc =>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

chọn a = 7 ; b = 3 ; c = \(\frac{21}{11}\)

=> \(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}=0,81>\frac{3}{4}\)

Vậy BĐT phải là : 

\(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)

quy đồng ta có : 

\(\frac{b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)

<=> 4 .( b2c + bc2 + c2a + ca2 + a2b +ab2 ) \(\ge\)3(2abc + a2b + ab2 + b2c + bc2 + c2a + ca2 ) 

<=> a2b + ab2 +b2c +bc2 + c2a + ac2 \(\ge\)6abc

<=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

<=>\(\frac{a+b}{c}+1+\frac{b+c}{a}+\frac{c+a}{b}\ge9\)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)          ( 1 ) 

Ta có BĐT phụ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

<=> ( a + b + c )( ab + bc + ac ) \(\ge\)9abc

Thật vậy do \(a+b+c\ge3\sqrt[3]{abc}\)

                    \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)

=> \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\)

đpcm .Dấu " = " xảy ra khi a= b = c 

Đề em nghĩ có chút sai sai nên em sửa rồi nha anh ( chắc vậy ) 

7 tháng 4 2020

Không biết có ai bị lỗi công thức Toán  như mình không... Cứ phải mượn trình gõ Latex bên AoPS không à... Gõ bên olm không hiện.

Giả sử $c=\min\{a,b,c\}$. Ta có:

$\text{VT-VP}=\frac{\left( b-c \right) \left( a-c \right) \left( a+b \right) +2\,c
 \left( a-b \right) ^{2}}{4(a+b)(b+c)(c+a)} \geqq 0$

Vậy điều kiện bài toán là thừa thải, và bất đẳng thức trên ngược dấu :)))

28 tháng 8 2017

lay 3-VT la xong ban ak,day la phuongphap dao dau ma

12 tháng 4 2017

Từ \(1=\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{8\left(a+b+c\right)^3}{27}\Rightarrow a+b+c\ge\dfrac{3}{2}\)

Áp dụng bổ đề \((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ca)\)

\(1\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\ge\dfrac{8}{9}\cdot\dfrac{3}{2}\left(ab+bc+ca\right)\)

\(=\dfrac{4}{3}\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\dfrac{3}{4}\)

13 tháng 4 2017

Bổ đề(tự cm): 8(a+b+c)(ab+bc+ca) \(\le\)9(a+b)(b+c)(c+a)

Từ đó suy ra \(ab+bc+ca\le\dfrac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\dfrac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}=\dfrac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\dfrac{9}{4.3}=\dfrac{3}{4}\)