K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

a) 1/3x + 2/5x - 2/5 = 0

=> x = 0,54

b) 12n - 4n^2 - 18 + 6n +0

<=> -4n^2 + 6n - 18 = 0

<=> (-4n)^2 + 6n + 12n - 18 +0

<=> - 2n (2n-3 ) + 6 ( 2n - 3 ) = 0

,<=> ( 6 - 2n ) ( 2n -3 )=0

<=> 6 - 2n = 0 => n +3 / 2n-3 =0 => n = 3/2

9 tháng 5 2022

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 tháng 5 2022

thanks bạn

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

1 tháng 10 2021

\(1^2+2^2+3^2...+n^2=1+2\left(1+1\right)+3\left(2+1\right)+...+n\left(n-1+1\right)\\ =1+1\cdot2+2+3\cdot2+3+...+n\left(n-1\right)+n\\ =\left(1+2+3+...+n\right)+\left[1\cdot2+2\cdot3+...+n\left(n-1\right)\right]\)

Ta có \(1\cdot2+2\cdot3+...+n\left(n-1\right)\)

\(=\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n-1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n-1\right)\left(n+2+n+1\right)\right]\\ =\dfrac{1}{3}\left(1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)\right)\\ =\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\)

\(\Rightarrow1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\\ =\dfrac{3n\left(n+1\right)+2n\left(n-1\right)\left(n+1\right)}{6}=\dfrac{n\left(n+1\right)\left(3+2n-2\right)}{6}\\ =\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.