K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

10 tháng 2 2018

bạn có thể trình bày theo bdt cô si hay bunhia  được không

25 tháng 2 2017

Cách giải khác:

Dư đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta được \(P_{Min}=1\)

Thật vậy cần chứng minh \(Σ\frac{1}{4x^2-yz+2}\ge1\LeftrightarrowΣ\left(\frac{1}{4x^2-yz+2}-\frac{1}{3}\right)\ge0\)

\(\LeftrightarrowΣ\frac{1-4x^2+yz}{4x^2-yz+2}\ge0\LeftrightarrowΣ\frac{xy+xz+2yz-4x^2}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\frac{\left(z-x\right)\left(2x+y\right)-\left(x-y\right)\left(2x+z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(z^2+2xy+2\right)\left(z^2-xy+2\right)\ge0\)

25 tháng 2 2017

3/2 nha

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

13 tháng 7 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)

Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :

\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)

Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...

dấu = bạn tự xét nhé :V

13 tháng 7 2020

dấu = xảy ra ko đúng rồi phải

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm

17 tháng 6 2016

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

16 tháng 6 2016

bài của tui mà -_-