K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

Có \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}=\dfrac{2}{8-\sqrt{2\left(a^2+b^2\right)}}\)

Tương tự: \(\dfrac{1}{4-\sqrt{bc}}\le\dfrac{2}{8-\sqrt{2\left(b^2+c^2\right)}}\),  \(\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2\left(a^2+c^2\right)}}\)

Đặt \(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)=\left(x;y;z\right)\)

Khi đó \(\left\{{}\begin{matrix}x+y+z=6\\z,y,z>0\end{matrix}\right.\) (1)

Đặt VT của bđt là A

Có  \(A=\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2x}}+\dfrac{2}{8-\sqrt{2y}}+\dfrac{2}{8-\sqrt{2z}}\)

Ta cm bđt phụ: \(\dfrac{2}{8-\sqrt{2x}}\le\dfrac{1}{36}\left(x-2\right)+\dfrac{1}{3}\)

Thật vậy bđt trên tương đương \(\dfrac{6}{3\left(8-\sqrt{2x}\right)}-\dfrac{8-\sqrt{2x}}{3\left(8-\sqrt{2x}\right)}-\dfrac{1}{36}\left(x-2\right)\le0\)

\(\Leftrightarrow\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{3\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{36}\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)\left[\dfrac{\sqrt{2}.12}{36\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}+\sqrt{2}\right)\left(8-\sqrt{2x}\right)}{36\left(8-\sqrt{2x}\right)}\right]\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2.\dfrac{\left(\sqrt{x}-2\sqrt{2}\right)}{36\left(8-\sqrt{2x}\right)}\le0\)  (*)

Từ (1) ta có \(x\in\left(0;6\right)\) nên bđt phụ trên luôn đúng
Tương tự ta cũng có \(\dfrac{2}{8-\sqrt{2y}}\le\dfrac{1}{36}\left(y-2\right)+\dfrac{1}{3}\) , \(\dfrac{2}{8-\sqrt{2z}}\le\dfrac{1}{36}\left(z-2\right)+\dfrac{1}{3}\)
Từ đó => \(A\le\dfrac{1}{36}\left(x+y+z-6\right)+1=\dfrac{1}{36}\left(6-6\right)+1=1\) (đpcm)
Dấu = xảy ra <=> x=y=z=2 <=> a=b=c=1

 



 

 

Ta có \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Leftrightarrow\left(a^2-2a+1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^4-a^3+1\ge a\)

\(\Leftrightarrow a^4-a^3+ab+2\ge a+ab+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự \(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)

             \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(=\sqrt{3\left(\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=1

19 tháng 3 2020

Đoán xem

NV
11 tháng 6 2021

Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Từ \(ab+bc+ac=1\Rightarrow a^2+ab+bc+ac=a^2+1\)

\(\Leftrightarrow (a+b)(a+c)=a^2+1\)

Tương tự: \(\left\{\begin{matrix} b^2+1=(b+c)(b+a)\\ c^2+1=(c+a)(c+b)\end{matrix}\right.\)

Khi đó:

\(A=\frac{(b^2+bc)(c^2+ca)(a^2+ab)}{\sqrt{(a^4+a^2)(b^4+b^2)(c^4+c^2)}}\) \(=\frac{b(b+c)c(c+a)a(a+b)}{\sqrt{a^2b^2c^2(a^2+1)(b^2+1)(c^2+1)}}\)

\(=\frac{abc(a+b)(b+c)(c+a)}{abc\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}}\) \(=\frac{abc(a+b)(b+c)(c+a)}{abc(a+b)(b+c)(c+a)}=1\)

Vậy \(A=1\)

23 tháng 6 2017

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

24 tháng 6 2017

còn câu 1 nữa Ace Legona

6 tháng 7 2016

Trả lời hộ mình đi