K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)

\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\

\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )

\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)

\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

17 tháng 8 2019

\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)

Áp dụng BDT Cô-si với 2 số không âm:

\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)

Vậy.......

16 tháng 7 2021

\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

áp dụng BĐT AM-GM

\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)

\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)

có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)

\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)

\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)

tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)

(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

 

 

 

 

 

3 tháng 6 2019

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\)\(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)

\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)

NV
25 tháng 11 2019

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 11 2019

Căn bậc hai. Căn bậc ba

23 tháng 4 2016

Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến  \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như  \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\)  (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là  \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\)  \(s\) đi!

Đề: Cho ba số thực dương  \(x,y,z\)  thỏa mãn  \(x+y+z=1\)  

Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\)  \(\left(\text{*}\right)\)

Lời giải:

Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được  \(1>x,y,z>0\)  với mọi  \(x,y,z\in R^+\)

\(\Rightarrow\)  \(1-x>0;\)  \(1-y>0;\)  \(1-z>0\)  

Khi đó, áp dụng bất đẳng thức  \(AM-GM\)  cho hai số không âm với chú ý rằng  \(x+y+z=1\)  (theo giả thiết), ta có: 

\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị  \(y\)  \(\rightarrow\)  \(z\)  \(\rightarrow\)  \(x\), ta chứng minh được:

\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\)  \(\left(2\right)\)  và  \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\)  \(\left(3\right)\)

Cộng từng vế các bất đẳng thức \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right),\)  ta được:

\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{3}\)

23 tháng 4 2016

ở mẫu phải là dấu cộng mới đúng chứ bạn

8 tháng 2 2019

\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

8 tháng 2 2019

Xin lỗi bạn. Bài đó mk lm sai rồi.

Sửa:

Áp dụng BĐT AM-GM ta có:

\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

13 tháng 12 2019

Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)

\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)

\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)

Cộng vế với vế, ta được:

\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

10 tháng 3 2020

\(VT-VP=\Sigma_{cyc}\frac{\frac{1}{2}\left(x+y+1\right)\left(x-y\right)^2}{xy\left(\sqrt{x^3+y^3+1}+\sqrt{3xy}\right)}+\Sigma_{cyc}\frac{\left(x-1\right)^2}{xy\left(\sqrt{x^3+y^3+1}+\sqrt{3xy}\right)}\)