K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

NV
15 tháng 2 2022

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

17 tháng 3 2020

Với \(a,b,c\in Z\)

Trong \(a=2^b\cdot c\) có thừa số \(2^b>0\forall b\in Z\) nên \(a\) và \(c\) phải cùng dấu

\(TH1\): Với \(a,c\le-1\) (âm):

Ta có: \(9^a\notin Z\) (vì có số mũ âm)

\(\Rightarrow9^a+952\notin Z\) (vì \(952\in Z\)), mà \(\left(b+41\right)^2\in Z\) (vì \(b\in Z,41\in Z\))

\(\Rightarrow9^a+952\ne\left(b+41\right)^2\)

\(TH2\): Với \(a,c\ge0\) (không âm):

(I) Với \(b\ge1\):

Ta có: \(2^b⋮2\) (vì \(b\ge1\)\(\Rightarrow a=2^b\cdot c⋮2\) \(\Rightarrow\) \(a\) chẵn

\(\Rightarrow9^a\) có số mũ \(a\) chẵn, thì \(9^a\) có chữ số tận cùng là 1

\(\Rightarrow9^a+952\) có chữ số tận cùng là 1 + 2 = 3

Ta lại có: \(\left(b+41\right)^2\) không bao giờ có chữ số tận cùng là 3 (vì số chính phương không bao giờ có chữ số tận cùng là 3)

Từ đó, \(9a+952\ne\left(b+41\right)^2\)

(II) Với \(b\le0\):

Ta có: \(a=2^b\cdot c\Leftrightarrow c=\frac{a}{2^b}\)

\(9^a>0\forall a\in Z\Rightarrow9^a+952>0\forall a\in Z\)

Nếu \(a\) là số chẵn thì không thể tìm được \(b,c\in Z\) (đã chứng minh trên).

Với \(a\) lẻ thì \(9^a\) thì có chữ số tận cùng là 9 \(\Rightarrow9^a+952\) có chữ số tận cùng là 1.

\(9^a+952=\left(b+41\right)^2\Leftrightarrow b+41=\pm\sqrt{9^a+952}\)

Vì \(b+41\in Z\) (chứng minh trên), nên \(9^a+952\in Z\Rightarrow9^a+952\) là số chính phương, mà \(9^a+952\)lẻ.

\(\Rightarrow9^a+952\) chia 8 dư 1 \(\Rightarrow9^a\) chia 8 dư 1 (vì \(952⋮8\))

Chỉ tìm được \(a=1,a=3\) thoả mãn điều kiện trên (\(9^1=9\) chia 8 dư 1, \(9^3=729\) chia 8 dư 1).

- Thay \(a=1\), ta có: \(b+41=\pm\sqrt{9+952}=\pm\sqrt{961}=\pm31\Leftrightarrow b\in\left\{-72;-10\right\}\)

\(c\in\left\{\frac{1}{2^{-72}};\frac{1}{2^{-10}}\right\}=\left\{2^{72};2^{10}\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(1;-72;2^{72}\right),\left(1;-10;2^{10}\right)\).

- Thay \(a=3\), ta có: \(b+41=\pm\sqrt{9^3+952}=\pm41\Leftrightarrow b\in\left\{-82;0\right\}\)

\(c\in\left\{\frac{3}{2^{-82}};\frac{3}{2^0}\right\}=\left\{2^{82}\cdot3;3\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(3;-82;2^{82}\cdot3\right),\left(3;0;3\right)\).

Nếu đề bài cho là \(b\) không âm thì \(a=3,b=0,c=3\) là các số cần tìm.

P/S: Nếu mà đề bài cho \(b\) không âm thì không cần phải trình bày dài dòng như trên.

\(b\le0\) (từ \(TH2\) phần II) và \(b\ge0\) (\(b\) không âm), tức là \(b=0\) (\(a=2^0\cdot c=1\cdot c=c\)), rồi không cần trình bày dài dòng như trên, mà chỉ cần thay \(b=0\) vào phương trình \(9^a+952=\left(b+41\right)^2\) là tìm được \(a=c=3\) ngay.

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

4 tháng 3 2018

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

NV
13 tháng 1

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị