K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)}\)

\(=\frac{9}{2-\left(a^2+b^2+c^2\right)}\ge\frac{9}{2-\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{2-\frac{1}{3}}=\frac{9}{\frac{5}{3}}=\frac{27}{5}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

3 tháng 7 2017

@Thắng Nguyễn
Nếu đề là min của \(\text{ }\frac{1}{2x}-x^2+\frac{1}{2y}-y^2+\frac{1}{2z}-z^2\) thì liệu giải đ.c không nhỉ? 
 

NV
24 tháng 12 2022

\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)

\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)

\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)

b.

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)

\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)

24 tháng 12 2022

khi 9+4\(\sqrt{5}\) là từ đâu ạ

28 tháng 3 2018

Dùng Cô-si ngược dấu: 
Ta có : a\(1+b^2)=a-(ab^2/(1+b^2))>=a-(ab^2/2b)=... 
Tương tự ta có:b/(1+c^2)>=b-bc/2 
c/(1+a^2)>=c-ac/2 
Cộng vế với vế ta có A>=(a+b+c)-(ab+bc+ca)/2 
Mà 3(ab+bc+ca)<=a^2+b^2+c^2+2ab+2bc+2ca 
<=>3(ab+bc+ca)<=(a+b+c)^2 
<=>-(ab+bc+ca)>=-(a+b+c)^2/3 
Thay vào ta có: A>=(a+b+c)-(a+b+c)^2/6=3/2 
Dấu = xảy ra<=>a=b=c=1/3

28 tháng 3 2018

đề bài của mình mẫu là 1+2b^2 ko phải 1+b^2

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

NV
12 tháng 5 2021

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)

Tương tự:

\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)

Cộng vế với vế:

\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)

12 tháng 6 2016

Từ 2a+2b+2c=3abc chia cả hai vế cho abc>0 ta được

\(2\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)=3=>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{2}\)

\(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Ta có 

14 tháng 3 2021

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).