K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2023

  `n(\Omega)=6! =720`

`@TH1:` H/s lớp `C` ngồi đầu tiên hoặc cuối cùng.

  `=>` Có `2.1.A_3 ^1 .4! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

`@TH2:` H/s lớp `C` không ngồi đầu cũng không ngồi cuối.

  `=>` Có `4.A_3 ^2 .3! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

Gọi `A:`" H/s lớp `C` không ngồi cạnh h/s lớp `B`"

   `=>n(A)=144.2=288`

`=>P(A)=288/720=2/5`

    `->bb D`

Chọn B

9 tháng 2 2018

4 tháng 3 2018


10 tháng 10 2019

Chọn A

Số cách xếp ngẫu nhiên 6 học sinh vào dãy ghế:  n ( Ω ) = 6!.

Gọi M là biến cố “xếp 6 học sinh vào dãy ghế mà không có học sinh lớp C nào ngồi cạnh nhau”.

Gọi M ¯  là biến cố “xếp 6 học sinh vào dãy ghế mà hai học sinh lớp C ngồi cạnh nhau”.

Ghép 2 học sinh lớp C thành nhóm X.

Xếp nhómX, 2 học sinh lớp A, 2 học sinh lớp B vào dãy ghế: 5!.

Hoán đổi vị trí 2 học sinh lớp C: 2!.

Vậy 

16 tháng 3 2018

Chọn B

Xếp 9 người vào 9 ghế kê hàng ngang ta có: Ω =9! cách sắp xếp.

Gọi B là biến cố để “mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.”

Theo đề, học sinh A ngồi ở một trong hai đầu hàng nên có 2 cách sắp xếp.

Xếp 5 học sinh còn lại vào 5 vị trí có 5! cách sắp xếp. Xem mỗi học sinh tạo thành một vách ngăn tạo thành 5 khoảng trống. Xếp 3 thầy vào 5 khoảng trống có  A 5 3  cách.

 cách.

11 tháng 4 2017

Chọn D

Nhóm có tất cả 9 học sinh nên số cách xếp 9 học sinh này ngồi vào một hàng có 9 ghế là 9! = 362880(cách).

Vậy số phần tử không gian mẫu là  n ( Ω ) = 362880

Đặt biến cố A: “ 3 học sinh lớp  không ngồi  ghế liền nhau”.

Giả sử  học sinh lớp 10 ngồi 3 ghế liền nhau. Ta xem 3 học sinh này là một nhóm

+/ Xếp X và 6 bạn còn lại vào ghế có 7! cách xếp.

+/ Ứng với mỗi cách xếp ở trên, có 3! cách xếp các bạn trong nhóm X.

Vậy theo quy tắc nhân ta có số cách xếp là: 7!.3! = 30240 (cách).

Suy ra số cách xếp để  học sinh lớp  không ngồi cạnh nhau là  (cách) .

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là 362880 - 30240 = 332640 (cách)

=> n(A) = 332640

Vậy xác suất để  học sinh lớp 10 không ngồi cạnh nhau là 

8 tháng 4 2019

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

7 tháng 1 2017

Chọn đáp án A.