K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Ta có

\(\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)\left(a^2+b^2+c^2\right)\ge\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)^2=\frac{9}{16}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow M=4\left(a^2+b^2+c^2\right)\ge3\)

Đạt được khi: \(a=b=c=\frac{1}{2}\)

22 tháng 11 2016

Ta có:

\(a^2+b^2\ge2ab\)  (1)

\(b^2+c^2\ge2bc\) (2)

\(a^2+c^2\ge2ac\) (3)

Cộng từng vế (1);(2);(3)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

\(\Leftrightarrow4\left(a^2+b^2+c^2\right)\ge3\)

Dấu "=" xãy ra<=>a=b=c=1/2

vậy MinM=3<=>a=b=c=1/2

AH
Akai Haruma
Giáo viên
14 tháng 5 2022

Lời giải:
$M=c^2(\frac{1}{a^2}+\frac{1}{b^2})+\frac{a^2+b^2}{c^2}+2017$

$\geq \frac{4c^2}{a^2+b^2}+\frac{a^2+b^2}{c^2}+2017$ (theo BĐT Cauchy-Schwarz)

$=\frac{3c^2}{a^2+b^2}+(\frac{c^2}{a^2+b^2}+\frac{a^2+b^2}{c^2})+2017$

$\geq \frac{3(a^2+b^2)}{a^2+b^2}+2\sqrt{\frac{c^2}{a^2+b^2}.\frac{a^2+b^2}{c^2}}+2017=3+2+2017=2022$ (theo BĐT AM-GM)

Vậy $M_{\min}=2022$

11 tháng 5 2021

Với mọi số thực ta luôn có:

`(a-b)^2+(b-c)^2+(c-a)^2>=0`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`

`<=>a^2+b^2+c^2>=4/3`

Dấu "=" xảy ra khi `a=b=c=2/3`

~Quang Anh Vũ~

NV
8 tháng 5 2021

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$