K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:

Áp dụng BĐT AM-GM:

$y\sqrt{x-1}=\sqrt{y^2(x-1)}=\sqrt{y(xy-y)}\leq \frac{y+xy-y}{2}=\frac{xy}{2}$

$x\sqrt{y-2}=\sqrt{x^2(y-2)}=\sqrt{x(xy-2x)}\leq \frac{2x+(xy-2x)}{2\sqrt{2}}=\frac{xy}{2\sqrt{2}}$

$\Rightarrow y\sqrt{x-1}+x\sqrt{y-2}\leq \frac{xy}{2}+\frac{xy}{2\sqrt{2}}=xy.\frac{2+\sqrt{2}}{4}$

$\Rightarrow P\leq \frac{2+\sqrt{2}}{4}$

Vậy $P_{\max}=\frac{2+\sqrt{2}}{4}$

NV
2 tháng 8 2021

Đúng là \(\dfrac{x^2}{9}+\dfrac{y^2}{9}=1\) chứ em? Đề thật kì quặc, tại sao ko cho luôn là \(x^2+y^2=9\) cho rồi

Ta có:

\(\left(x+2.y\right)^2\le\left(1+4\right)\left(x^2+y^2\right)=45\)

\(\Rightarrow-3\sqrt{5}\le x+2y\le3\sqrt{5}\)

\(\Rightarrow1-3\sqrt{5}\le x+2y\le1+3\sqrt{5}\)

\(P_{max}=1+3\sqrt{5}\) khi \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{5}};\dfrac{6}{\sqrt{5}}\right)\)

\(P_{min}=1-3\sqrt{5}\) khi \(\left(x;y\right)=\left(-\dfrac{3}{\sqrt{5}};-\dfrac{6}{\sqrt{5}}\right)\)

NV
2 tháng 8 2021

Nếu đề là:

\(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) \(\Leftrightarrow4x^2+9y^2=36\)

Ta có:

\(\left(x+2y\right)^2=\left(\dfrac{1}{2}.2x+\dfrac{2}{3}.3y\right)^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=25\)

\(\Rightarrow-5\le x+2y\le5\)

\(\Rightarrow-4\le x+2y+1\le6\)

\(P_{max}=6\) khi \(\left(x;y\right)=\left(\dfrac{9}{5};\dfrac{8}{5}\right)\)

\(P_{min}=-4\) khi \(\left(x;y\right)=\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)

6 tháng 3 2017

Áp dụng BĐT AM-GM ta có:

\(2x+y+z\ge4\sqrt[4]{x\cdot x\cdot y\cdot z}\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{4\sqrt[4]{x^2yz}}\)

Lại có: \(4\sqrt[4]{\frac{1}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta cũng có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)\(;\)\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng theo vế ta có:\(VT\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1005}{2}\)

6 tháng 3 2017

Thắng pro quá rồi ,bài này chỉ đơn giản áp dụng bđt 1/(x+y) <= 1/4(1/x+1/y) 

để ý 1/2x+y+z=1/(x+y)+(z+x) 

6 tháng 5 2020

\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)

\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)

Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)

Vậy \(P\le1\)hay max P = 1.

Dẫu "=" xảy ra <=> x = y = 1.

6 tháng 5 2020

Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)

Áp dụng BĐT Cauchy ta có:

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)

\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1

Vậy GTKN của P=1 đạt được khi x=y=1

10 tháng 2 2023

không biết :))))

18 tháng 3 2016

\(y=\frac{x+1}{x^2+x+1}\Leftrightarrow y\left(x^2+x+1\right)=x+1\Leftrightarrow x^2y+xy+y-x-1=0\)

\(\Leftrightarrow yx^2+\left(y-1\right)x+y-1=0\) 

*Khi y =0 => x = -1

*Khi y khác 0 ta có pt bậc 2 ẩn x tham số y :

\(\Delta=\left(y-1\right)^2-4y\left(y-1\right)=-3y^2+2y+1\)

Pt có nghiệm <=> - 3y2 +2y +1 >=0 <=> 3y2 -2y -1 <=0 <=> -1/3 <=y <=1

Vì y =0 < y = 1, nên 0 không phải là GTLN.

Vậy GTLN của y = 1 <=> x = 0

18 tháng 3 2016

Cách khác lớp 8:

\(y=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\), vì x2/x2 +x +1 <=0, với mọi x

Dấu = xảy ra khi x = 0

30 tháng 4 2023

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$

2 tháng 4 2023

Xét hàm \(h\left(t\right)=f\left(t\right)-m.g\left(t\right)\)

Với \(\left\{{}\begin{matrix}f\left(t\right)=\sqrt{3t^2+1}\\g\left(t\right)=t\\m=\dfrac{f'\left(\dfrac{1}{3}\right)}{g'\left(\dfrac{1}{3}\right)}=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Vậy xét hàm: \(h\left(t\right)=\sqrt{3t^2+1}-\dfrac{\sqrt{3}}{2}t\)

\(\Rightarrow h'\left(t\right)=\dfrac{3t}{\sqrt{3t^2+1}}-\dfrac{\sqrt{3}}{2}\)\(\Rightarrow h'\left(t\right)=0\Leftrightarrow t=\dfrac{1}{3}\)

Bảng biến thiên

Theo bảng biến thiên:

\(h\left(t\right)\ge\dfrac{\sqrt{3}}{2}\)\(\Rightarrow\sqrt{3t^2+1}\ge\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}t\)

\(\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\ge\dfrac{3\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}=2\sqrt{3}\left(x+y+z=1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

2 tháng 4 2023

Trên mình tìm nhầm thành min gòi, mà bài này tìm max nên làm như này nhé 

Vì \(x,y,z\in\left[0,1\right]\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\)

\(\sqrt{3x^2+1}\le\sqrt{x^2+2x+1}=x+1\)

Tương tự:

\(\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\le x+y+z+3=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị của nó