K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

mù chữ hả bé con ? 

4 tháng 5 2022

ko đọc đc chữ

phải cho đi hok lại ngay ;-; 

3 tháng 10 2023

Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
 

\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)

\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)

\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)

=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Gọi biểu thức đã cho là $P$. Đặt $\sqrt{xy}=a; \sqrt{yz}=b$ với $a,b>0$ thì ta cần chứng minh:

$P=\frac{a}{1+b}+\frac{1}{a+b}+\sqrt{\frac{2b}{a+1}}\geq 2$

Áp dụng BĐT AM-GM:

\(\frac{a+1}{2b}.1\leq \left(\frac{\frac{a+1}{2b}+1}{2}\right)^2=(\frac{a+1+2b}{4b})^2\)

\(\Rightarrow \sqrt{\frac{2b}{a+1}}\geq \frac{4b}{a+2b+1}(1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{1+b}+\frac{1}{a+b}=\frac{a+b+1}{b+1}+\frac{a+b+1}{a+b}-2=(a+b+1)(\frac{1}{b+1}+\frac{1}{a+b})-2\geq \frac{4(a+b+1)}{a+2b+1}-2(2)\)

Từ \((1);(2)\Rightarrow P\geq \frac{4(a+2b+1)}{a+2b+1}-2=2\) (đpcm)

 

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

14 tháng 3 2021

Áp dụng BĐT Cauchy:

\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\)

\(=\dfrac{x}{\sqrt{x\left(y+z\right)}}+\dfrac{y}{\sqrt{y\left(z+x\right)}}+\dfrac{z}{\sqrt{z\left(x+y\right)}}\)

\(\ge\dfrac{x}{\dfrac{x+y+z}{2}}+\dfrac{y}{\dfrac{x+y+z}{2}}+\dfrac{z}{\dfrac{x+y+z}{2}}\)

\(=\dfrac{2x}{x+y+z}+\dfrac{2y}{x+y+z}+\dfrac{2z}{x+y+z}\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" không xảy ra nên \(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}>2\)