K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

18 tháng 5 2019

áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx},\)với mọi x,y,z dương\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}\)với x,y,z dương

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{1}{8}\)

Hay giá trị lớn nhất của M =8 khi x=y=z

18 tháng 5 2019

mk gõ nhầm chỗ kết luận GTNN của M=1/8

13 tháng 5 2017

Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:

\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)

Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)

Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)

\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)

9 tháng 2 2016

Xét \(\left(x+y\right)\ge2\sqrt{xy}\)(1)

Tương tự ta có \(\left(z+y\right)\ge2\sqrt{zy}\)(2)

\(\left(x+z\right)\ge2\sqrt{xz}\)(3)
Nhân (1);(2);(3) theo vế ta được:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

=>\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\le\frac{xyz}{8xyz}=\frac{1}{8}\)

Đẳng thức xảy ra <=>x=y=z

NV
14 tháng 2 2022

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)