K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 8 2020

Lời giải:

Ta có:

$a^2+b^2+c^2+ab+bc+ac=\frac{6(a^2+b^2+c^2+ab+bc+ac)}{6}=\frac{4(a+b+c)^2+(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\Rightarrow P\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}.\left[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\right]$

Đặt $a-b=m, b-c=n$ thì $a-c=m+n$

Khi đó:

$6P\geq [m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

$[m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

$\geq [\frac{(m+n)^2}{2}+(m+n)^2]\left[\frac{1}{2}(\frac{1}{m}+\frac{1}{n})^2+\frac{1}{(m+n)^2}\right]$

$\geq \frac{3}{2}.(m+n)^2\left[\frac{8}{(m+n)^2}+\frac{1}{(m+n)^2}\right]$

$=\frac{3}{2}(m+n)^2.\frac{9}{(m+n)^2}=\frac{27}{2}$

$\Rightarrow 6P\geq \frac{27}{2}$

$\Rightarrow P\geq \frac{9}{4}$

Vậy GTNN của $P$ là $\frac{9}{4}$.

24 tháng 8 2020

chuẩn rồi bạn bài này mình lấy ra từ đề thi tỉnh học sinh giỏi mà

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

21 tháng 7 2020

Áp dụng bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left[3-\left(a+b+c\right)\right]^2}{\sum\sqrt{2\left(b+c\right)^2+bc}}=\frac{4}{\sum\sqrt{2\left(b+c\right)^2+bc}}\)\(\ge\frac{4}{\sum\sqrt{2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}}}=\frac{4}{\sum\sqrt{\frac{9\left(b+c\right)^2}{4}}}\)\(=\frac{8}{6\left(a+b+c\right)}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

11 tháng 4 2021

alibaba nguyễn giúp em với WTFシSnow WTFシSnow 

31 tháng 12 2017

Áp dụng bđt cô si ta có:
\(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{a+b+ab}{b+1}\ge2a\)
\(\Leftrightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge2a-\frac{a\left(b+1\right)+b}{b+1}=2a-a-\frac{b}{b+1}=a-\frac{b}{b+1}\)
Mặt khác:
\(\frac{b}{b+1}\le\frac{b+1}{4}\)
\(\Rightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge a-\left(\frac{b+1}{4}\right)\)
Tương tự:
\(\frac{b^2\left(c+1\right)}{b+c+bc}\ge b-\left(\frac{c+1}{4}\right)\)
\(\frac{c^2\left(a+1\right)}{c+a+ca}\ge c-\left(\frac{a+1}{4}\right)\)
\(\Rightarrow P\ge\left(a+b+c\right)-\left(\frac{a+1}{4}+\frac{b+1}{4}+\frac{c+1}{4}\right)=\left(a+b+c\right)-\left(\frac{\left(a+b+c\right)+3}{4}\right)=3-\left(\frac{3+3}{4}\right)=\frac{3}{2}\)Vậy GTNN của P=3/2 
(Thấy sai sai chỗ nào đó mà ko biết chỗ nào, ae thấy thì chỉ nhá )

31 tháng 12 2017

đoạn bạn dùng cô si ấy hình như bị sai do nếu a=b=c=1 thì sao lại a^2(b+1)/(a+b+ab)=(a+b+ab)/(b+1)
 

22 tháng 1 2021

- Giả sử \(2\ge a>b>c\ge0\)

- Áp dụng bđt Cô-si cho 3 số , ta có :

 \(\frac{1}{\left(a-b\right)^2}+\left(a-b\right)+\left(a-b\right)\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left(a-b\right).\left(a-b\right)}=3\)

+

 \(\frac{1}{\left(b-c\right)^2}+\left(b-c\right)+\left(b-c\right)\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left(b-c\right).\left(b-c\right)}=3\)

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+2\left(a-c\right)\ge6\)

Do đó : \(P\ge\frac{1}{\left(a-c\right)^2}-2\left(a-c\right)+6\)

Do \(2\ge a>b>c\ge0\Rightarrow2\ge a-c>0\)

\(\Rightarrow P\ge\frac{1}{2^2}-2.2+6=\frac{9}{4}\)

Vậy : \(MinP=\frac{9}{4}\Leftrightarrow a=2;b=1;c=0\)và các hoàn vị của nó