K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

m thử sử dụng cái j mà x-y=-(y-z+z-x)

NV
12 tháng 3 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)

12 tháng 2 2020

\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Trường hợp x=y=z thì không phải bàn,ns cái trường hợp x+y+z=0

\(\frac{1}{x^2+y^2-z^2}=\frac{1}{\left(x+y\right)^2-2xy-z^2}=\frac{1}{\left(-z\right)^2-z^2-2xy}=\frac{1}{-2xy}\)

Tương tự rồi cộng lại thì \(BT=0\) thì phải

12 tháng 2 2020

Condition\(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Put \(P=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)

\(=\frac{1}{x^2+\left(y-z\right)\left(y+z\right)}+\frac{1}{y^2+\left(z-x\right)\left(z+x\right)}+\frac{1}{z^2+\left(x-y\right)\left(x+y\right)}\left(4\right)\)

Because \(x^2+y^2+z^2=3xyz\)

\(\Leftrightarrow x^2+y^2+z^2-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)ư\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{cases}}\)

The first case: If \(x+y+z=0\left(1\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\left(2\right)}\)

From \(\left(1\right)\Rightarrow\hept{\begin{cases}x-y=-2y-z\\y-z=-2z-x\\z-x=-2x-y\end{cases}\left(3\right)}\)

 \(\left(2\right)\)and \(\left(3\right)\)into \(\left(4\right)\)we have

\(P=\frac{1}{x^2-x\left(-2z-x\right)}+\frac{1}{y^2-y\left(-2x-y\right)}+\frac{1}{z^2-z\left(-2y-z\right)}\)

\(=\frac{1}{2x^2+2xz}+\frac{1}{2y^2+2xy}+\frac{1}{2z^2+2yz}\)

\(=\frac{1}{2x\left(x+z\right)}+\frac{1}{2y\left(x+y\right)}+\frac{1}{2z\left(z+y\right)}\)

\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)

\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)

\(=\frac{z+x+y}{-2xyz}=0\)( Because x+y+z=0)

The second case:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\left(5\right)\)

We have \(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y,z\\\left(y-z\right)^2\ge0;\forall x,y,z\\\left(z-x\right)^2\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0;\forall x,y,z\left(6\right)\)

From \(\left(5\right),\left(6\right)\)\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Because \(x=y=z\Rightarrow x^2=y^2=z^2=xy=yz=zx\)

So \(P=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(=\frac{z+x+y}{xyz}=0\)

So...

30 tháng 3 2020

giúp ko biết đc j ko nhỉ ^^

ta có \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz.\)lúc đó 

\(P=\frac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2+y^2\left(x+y\right)+x^2\left(x+z\right)+z^2\left(z+y\right)}\)

\(P=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}=2018\)