K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\) \(=\sqrt{3.\left(4.3+3\right)}=\sqrt{3.15}=3\sqrt{5}\)

\(\text{Dấu ''='' xảy ra }\Leftrightarrow a=b=c=1\)

10 tháng 8 2018

d đâu ra vậy bạn ?

10 tháng 8 2018

Đặt \(A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\Rightarrow A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)

Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :

\(A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+4c+3\right)=3\left[4\left(a+b+c\right)+9\right]=3\left(12+9\right)=63\)

\(\Rightarrow A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le\sqrt{63}=3\sqrt{7}\)

Dấu \("="\) xảy ra khi \(a=b=c=1\)

19 tháng 7 2017

Áp dụng Cauchy-Schwarz:

\(VT^2\le\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)\)

\(=3\left(4\left(a+b+c\right)+3\right)\)

\(=3\left(4+3\right)=21< 25=VP^2\)

Suy ra VT<VP---> đúng

23 tháng 8 2019

Ap dung BDT Bun-hia-cop-xki ta co

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{1+1+1}.\sqrt{4\left(a+b+c\right)+3}=\sqrt{3.7}=\sqrt{21}\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

15 tháng 12 2015

Áp dụng BĐT Bunhiacopxki
\(\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\le\left(1+1+1\right)\left(4a+4b+4c+9\right)=63\)
\(\Rightarrow\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le3\sqrt{7}\)
Dấu "=" xảy ra <=> a=b=c=1

15 tháng 12 2015

C2 : Áp dụng BĐT cô si cũng đc nhưng mà hơi dài dài tí 

NV
19 tháng 1 2021

Đề bài thiếu, chắc chắn phải có thêm 1 dữ kiện khác

Ví dụ, bạn cho \(a=b=c=1000\) sẽ thấy BĐT sai

19 tháng 1 2021

Thôi e ra rồi ạ. Đề bài thiếu cái chỗ là "a+b+c = 1"

1 tháng 12 2019

ĐÂY MÀ LÀ toán 5 ạ??

1 tháng 12 2019

Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:

\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)

Suy ra 

             \(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)

Tương tự

            \(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)

và       \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)

Cộng ba BĐT trên ta có: 

           \(\frac{1}{2\sqrt{2}}A\ge B\)

Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)

\(+ca\left(4c+4a+b\right)]\)

\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)

\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)

\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)

và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)

Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)

Vậy 

              \(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

NV
24 tháng 11 2018

Áp dụng BĐT Bunhia:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)

Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)

24 tháng 6 2017

áp dụng bất đẳng thức: (a+b+c)^2<=3(a^2+b^2+c^2): 
[√(4a+1)+√(4b+1)+√(4c+1)]^2 
<= 3[4(a+b+c)+3]=21<25 
=>√(4a+1)+√(4b+1)+√(4c+1)<5

13 tháng 7 2020

cosi : \(\sqrt{4a+1}\)\(\sqrt{1}\)<\(\frac{4a+1+1}{2}\)= 2a + 1. tương tự  \(\sqrt{4b+1}\)\(\sqrt{1}\)<\(\frac{4b+1+1}{2}\)= 2b + 1;  \(\sqrt{4c+1}\)\(\sqrt{1}\)<\(\frac{4c+1+1}{2}\)= 2c + 1. Nên VT < 2(a+b+c) +3 = 5. Dấu = xảy ra khi và chỉ khi a=b=c = 1/3