K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

Đặt \(P=\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{a^2}{\left(a+2\right)\left(b+2\right)}.\frac{a+2}{27}.\frac{b+2}{27}.\frac{1}{9}}=\frac{4a}{9}\)(1)

\(\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{b^2}{\left(b+2\right)\left(c+2\right)}.\frac{b+2}{27}.\frac{c+2}{27}.\frac{1}{9}}=\frac{4b}{9}\)(2)

\(\frac{c^4}{\left(c+2\right)\left(a+2\right)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{c^2}{\left(c+2\right)\left(a+2\right)}.\frac{c+2}{27}.\frac{a+2}{27}.\frac{1}{9}}=\frac{4c}{9}\)(3)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(P+\frac{2\left(a+b+c\right)+12}{27}+\frac{3}{9}\ge\frac{4\left(a+b+c\right)}{9}\)

\(\Leftrightarrow P+\frac{2}{3}+\frac{3}{9}\ge\frac{4}{3}\)

\(\Leftrightarrow P\ge\frac{1}{3}\left(đpcm\right)\)Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)

22 tháng 11 2019

Cách khác

Ta co:

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\Sigma_{cyc}\left(a+2\right)\left(b+2\right)+12}\ge\frac{\left(a+b+c\right)^4}{36\left(a+b+c\right)+9\left(ab+bc+ca\right)+108}\ge\frac{3^4}{108.2+9.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{3}\)

11 tháng 1 2015

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

11 tháng 1 2015

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)

7 tháng 3 2020

Hỏi đáp Toán

4 tháng 9 2016

Bạn có thể tham khảo cách này

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)

BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)

ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự rồi cộng lại

\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

4 tháng 9 2016

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)

Khi đó ta có BĐT cần chứng minh tương đương với:

\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)

Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)

\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)

\(\ge3\left(x^2y+y^2z+z^2x\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)

Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)

\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)

Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)

7 tháng 11 2017

Áp dụng Holder:

\(24VT=\left(1+1+1+1+1+1\right)\left(a^3+a^3+c^3+c^3+b^3+b^3\right)\left(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{a^3}+\frac{1}{c^3}\right)\ge\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^3\)

Mà \(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge36\)( AM-GM)

\(24VT\ge36\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\Leftrightarrow VT\ge VF\)

Dấu = xảy ra khi a=b=c . 

P/s: BĐT holder: \(\left(a_1^n+a^n_2+...a_3^n\right)\left(b_1^n+b_2^n+...b_n^n\right)...\left(z_1^n+z_2^n+...z_n^n\right)\ge\left(a_1.b_1..z_1+a_2.b_2..z_2+...+a_n.b_n.z_n\right)^n\)

16 tháng 4 2021

\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).

Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+c^2\ge2ac\).

\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).

\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)

\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).

\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).

\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)

\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .

Chứng minh tương tự, ta được:

\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)

Chứng minh tương tự, ta dược:

\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).

\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).

Mà \(ab+bc+ca=3abc\)(theo đề bài).

Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).

\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).

\(\Leftrightarrow K\ge\frac{3}{2}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).

Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).

14 tháng 12 2017

bạn giải thử để tham khảo đi

14 tháng 12 2017

Nè Phong Đãng - Trang của Phong Đãng - Học toán với OnlineMath: 

Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\left(k\in R\right)\)    

\(\Rightarrow a=2016k,b=2017k,c=2018k\)

Thay vào biểu thức: \(4\left(a-b\right)\left(b-c\right)\), có: 

\(=4\left(2016k-2017k\right)\left(2017k-2018k\right)\)

\(=4\cdot\left(-1\right)\cdot k\cdot\left(-1\right)\cdot k=4k^2\)                                                                         (1)

Làm tương tự như vậy: \(\left(c-a\right)^2=\left(2018k-2016k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1)(2) suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)