K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

20 tháng 11 2016

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(< =>\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) (chia cả 2 vế cho a+b+c)

29 tháng 1 2020

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )

Dấu "=" \(\Leftrightarrow a=b\)

a) Áp dụng BĐT trên ta có:

\(\Sigma\left(\frac{1}{a^3+b^3+abc}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{a+b+c}\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{\left(a+b+c\right)\cdot abc}=\frac{1}{abc}\)

Dấu "=" khi \(a=b=c\)

b) \(\Sigma\left(\frac{1}{a^3+b^3+1}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{abc}=1\)

Dấu "=" khi \(a=b=c=1\)

c) \(\Sigma\left(\frac{1}{a+b+1}\right)\le\Sigma\left(\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)+\sqrt[3]{abc}}\right)=\Sigma\left[\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)}\right]\)

\(=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\cdot\left(\frac{1}{\sqrt[3]{ab}}+\frac{1}{\sqrt[3]{bc}}+\frac{1}{\sqrt[3]{ca}}\right)=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\cdot\sqrt[3]{abc}}=\frac{1}{\sqrt[3]{abc}}=1\)

Dấu "=" khi \(a=b=c=1\)

NV
11 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

13 tháng 2 2020

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

13 tháng 2 2020

lm phần d đi a k bt lm

10 tháng 10 2016

e ơi e nên tải tài liệu của võ quốc bá cẩn đi 

NV
14 tháng 9 2020

\(abc+a+c=b\Leftrightarrow ac+\frac{a}{b}+\frac{c}{b}=1\)

\(\Rightarrow\) tồn tại 1 tam giác nhọn ABC sao cho: \(\left\{{}\begin{matrix}a=tan\frac{A}{2}\\\frac{1}{b}=tan\frac{B}{2}\\c=tan\frac{C}{2}\end{matrix}\right.\)

Đặt vế trái của biểu thức là P, ta có:

\(P=\frac{2}{1+tan^2\frac{A}{2}}-\frac{2}{1+\frac{1}{tan^2\frac{B}{2}}}+\frac{3}{1+tan^2\frac{C}{2}}=2cos^2\frac{A}{2}-2sin^2\frac{B}{2}+3cos^2\frac{C}{2}\)

\(=cosA+cosB+3cos^2\frac{C}{2}=2cos\frac{A+B}{2}cos\frac{A-B}{2}+3cos^2\frac{C}{2}\)

\(=2sin\frac{C}{2}.cos\frac{A-B}{2}-3sin^2\frac{C}{2}-\frac{1}{3}cos^2\frac{A-B}{2}+\frac{1}{3}cos^2\frac{A-B}{2}+3\)

\(=-3\left(sin\frac{C}{2}-\frac{1}{3}cos\frac{A-B}{2}\right)^2+\frac{1}{3}cos^2\frac{A-B}{2}+3\le0+\frac{1}{3}+3=\frac{10}{3}\)