K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Với \(a,b,c\ge0\). Khi đó ta có

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Chứng minh: \(\left(ab+bc+ca\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a^2+b^2+c^2+abc\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge a^2+b^2+c^2\)\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{ab+bc+ac}\)

Với \(a,b,c\ge0\) ta có

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\ge1\)

Áp dụng bất đẳng thức AM-GM ta có:

\(\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}=\Sigma\sqrt{\frac{ab\left(2ab+2bc+2ac\right)^2}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ca\right)^2}}\)

\(\ge\Sigma\sqrt{\frac{ab\left[a\left(b+c\right)+b\left(a+c\right)\right]^2}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ac\right)^2}}\)

\(\ge\Sigma\sqrt{\frac{ab.4a\left(b+c\right)b\left(a+c\right)}{4\left(a+c\right)\left(b+c\right)\left(ab+bc+ca\right)^2}}=\Sigma\frac{ab}{ab+bc+ca}\)

Từ đó ta có \(\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\frac{ab+bc+ca}{ab+bc+ca}=1\)

chứng minh bài toán:

Đặt \(\sqrt{\frac{a^2+b^2+c^2}{ab+bc+ac}}=t\ge1\)

Ta có: \(\left(\Sigma\sqrt{\frac{a}{b+c}}\right)^2=\Sigma\frac{a}{b+c}+2\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\frac{a^2+b^2+c^2}{ab+bc+ac}+2=t^2+2\)

Từ đây ta chứng minh \(\sqrt{t^2+2}+\frac{3\sqrt{3}}{t}\ge\frac{7\sqrt{2}}{2}\)

Áp dụng bất đẳng thức bunhiacopxki ta có:

\(\sqrt{t^2+2}+\frac{3\sqrt{3}}{t}=\frac{\sqrt{\left(t^2+2\right)\left(6+2\right)}}{2\sqrt{2}}+\frac{3\sqrt{3}}{t}\ge\frac{t\sqrt{6}+2}{2\sqrt{2}}+\frac{3\sqrt{3}}{t}=\left(\frac{t\sqrt{3}}{2}+\frac{3\sqrt{3}}{t}\right)+\frac{\sqrt{2}}{2}\)

Áp dụng bất đẳng thức Cauchy ta đc:

\(\left(\frac{t\sqrt{3}}{2}+\frac{3\sqrt{3}}{t}\right)+\frac{\sqrt{2}}{2}\ge3\sqrt{2}+\frac{\sqrt{2}}{2}=\frac{7\sqrt{2}}{2}\)

Vậy ta có đpcm

21 tháng 7 2019

Em thấy nó là lạ chỗ:" từ đây ta chứng minh: \(\sqrt{t^2+2}+\frac{3\sqrt{3}}{t}\ge\frac{7\sqrt{2}}{2}\)" ấy ạ, em nghĩ phải là chứng minh \(\sqrt{t^2+2}+3\sqrt{3}.t\ge\frac{7\sqrt{2}}{2}\) chứ ạ?

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

11 tháng 7 2020

hgggggg

24 tháng 8 2020

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

19 tháng 5 2020

Đề: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\) ???

*Ta chứng minh : \(x^4-x^3+2\ge x+1\forall x>0\)

\(\Leftrightarrow x^4-x^3-x+1\ge0\Leftrightarrow\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( đúng )

Do đó: \(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\) \(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)