K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Dễ thấy các hệ số tương đồng nhau nên có thể biến đổi bđt về dạng sau : 

\(\left(\frac{1}{a^2}+\frac{2a^2}{3}\right)+\left(\frac{1}{b^2}+\frac{2b^2}{3}\right)+\left(\frac{1}{c^2}+\frac{2c^2}{3}\right)\ge5\)

Ta đi chứng minh bđt phụ sau : \(\frac{1}{a^2}+\frac{2a^2}{3}\ge\frac{7}{3}-\frac{2a}{3}\)(1)

\(Bđt\left(1\right)\Leftrightarrow\frac{1}{a^2}+\frac{2a^2}{3}-\frac{7}{3}+\frac{2a}{3}\ge0\)

               \(\Leftrightarrow\frac{3+2a^4-7a^2+2a^3}{3a^2}\ge0\)

              \(\Leftrightarrow\frac{2\left(a^4-2a^2+1\right)+2a^3-3a^2+1}{3a^2}\ge0\)

           \(\Leftrightarrow\frac{2\left(a^2-1\right)^2+2a^2\left(a-1\right)-\left(a^2-1\right)}{3a^2}\ge0\)

         \(\Leftrightarrow\frac{2\left(a-1\right)^2\left(a+1\right)^2+2a^2\left(a-1\right)-\left(a-1\right)\left(a+1\right)}{3a^2}\ge0\)

       \(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+2a^2-a-1\right]}{3a^2}\ge0\)

     \(\Leftrightarrow\frac{\left(a-1\right)\left[2\left(a-1\right)\left(a+1\right)^2+\left(a-1\right)\left(2a+1\right)\right]}{3a^2}\ge0\)

    \(\Leftrightarrow\frac{\left(a-1\right)^2\left[2\left(a+1\right)^2+2a+1\right]}{3a^2}\ge0\)(Luôn đúng do a > 0 nên [...] > 0)

Dấu "=" <=> a = 1

Thiết lập các bđt còn lại \(\frac{1}{b^2}+\frac{2b^2}{3}\ge\frac{7}{3}-\frac{2b}{3}\)

                                      \(\frac{1}{c^2}+\frac{2c^2}{3}\ge\frac{7}{3}-\frac{2c}{3}\)

Cộng 3 vế của bdtd lại ta được

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge7-\frac{2\left(a+b+c\right)}{3}=7-\frac{2.3}{3}=5\)

Dấu "=" xảy ra khi a = b = c = 1

31 tháng 3 2019

Tìm điểm rơi a=b=c=1 Min=5

Rồi áp dụng UCT giải

5 tháng 4 2021

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}+\frac{2\left(a+b+c\right)^2}{9}\)

\(\ge\frac{\left(\frac{9}{a+b+c}\right)^2}{3}+\frac{2\left(a+b+c\right)^2}{9}=\frac{3^2}{3}+\frac{2.9}{9}=5\)

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

13 tháng 7 2019

Mình chịu 

13 tháng 7 2019

\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương ) 

\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

... 

1 tháng 2 2019

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

1 tháng 2 2019

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

bđt phụ sai mà cũng ko đc chuẩn hóa

23 tháng 8 2017

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

25 tháng 11 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)

Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)

\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)

Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:

\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)

IS that true?

25 tháng 11 2019

Làm xong em mới nhận ra không cần đổi biến:D

Ta có:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)

Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))

Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)