K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)

\(=\frac{x}{\left(x+y\right)+\left(x+z\right)}+\frac{y}{\left(x+y\right)+\left(y+z\right)}+\frac{z}{\left(y+z\right)+\left(x+z\right)}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

\("="\Leftrightarrow x=y=z\)

23 tháng 3 2020

Đặt \(a=2x+y+z;b=2y+z+x;c=2z+x+y\)

\( \implies\) \(a+b+c=\left(2x+y+z\right)+\left(2y+z+x\right)+\left(2z+x+y\right)\) 

\( \implies\) \(a+b+c=4x+4y+4z\)

\( \implies\) \(x+y+z=\frac{a+b+c}{4}\) 

+)Ta có : \(a=2x+y+z\)

\(\iff\) \(a=x+\left(x+y+z\right)\)

\(\iff\) \(a-\left(x+y+z\right)=x\)

\(\iff\) \(a-\frac{a+b+c}{4}=x\)

\(\iff\) \(x=\frac{3a-b-c}{4}\)

+)Ta có :\(b=2y+z+x\)

\(\iff\) \(b=y+\left(y+z+x\right)\)

\(\iff\)\(b-\left(y+z+x\right)=y\)

\(\iff\) \(b-\frac{a+b+c}{4}=y\)

\(\iff\)\(y=\frac{3b-c-a}{4}\)

+)Ta có :\(c=2z+x+y\)

\(\iff\) \(c=z+\left(z+x+y\right)\)

\(\iff\) \(c-\left(z+x+y\right)=z\)

\(\iff\) \(c-\frac{a+b+c}{4}=z\)

\(\iff\)\(z=\frac{3c-a-b}{4}\)

​​\( \implies\)​ \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\) 

 \(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)

 \(=\frac{9}{4}-\left(\frac{b}{4a}+\frac{c}{4a}+\frac{c}{4b}+\frac{a}{4b}+\frac{a}{4c}+\frac{b}{4c}\right)\)

 \(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)

 \(=\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\)

Áp dụng bất đẳng thức ( BĐT Cosi ) : \(m+n\)\( \geq\)\(2\sqrt{mn}\) \(\left(m;n>0\right)\)ta được : 

\(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{a}.\frac{a}{b}}\) = 2 \( \implies\) \(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 

\(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 \(\sqrt{\frac{c}{a}.\frac{a}{c}}\) = 2 \( \implies\) \(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 

\(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{c}.\frac{c}{b}}\) = 2 \( \implies\) \(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 

\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 2 + 2 + 2 

\( \implies\) ​​\(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)​ \( \geq\) 6 

\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{6}{4}\)

\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{3}{2}\)

\( \implies\) \(-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(-\frac{3}{2}\)

\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{9}{4}-\frac{3}{2}\)

\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{3}{4}\) 

23 tháng 3 2020

Dấu " = " xảy ra khi a = b = c hay x = y = z 

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

20 tháng 4 2015

đặt a = 2x + y + z; b = 2y + z + x; c = 2z + x + y (a; b ; c > 0)

=> a + b + c = 4.(x+ y + z) => x + y + z = (a+ b+ c) / 4

=> x = a - (x+ y + z) = a - (a+ b + c) / 4 

y = b - (x + y + z) = b - (a+b+c) / 4

z = c - (x+y + z) = c - (a+b+c)/ 4 

Khi đó :  \(VT=1-\frac{a+b+c}{4a}+1-\frac{a+b+c}{4b}+1-\frac{a+b+c}{4c}\)

\(VT=3-\left(\frac{a+b+c}{4a}+\frac{a+b+c}{4b}+\frac{a+b+c}{4c}\right)=3-\frac{1}{4}.\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=3-\frac{1}{4}.\left(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\right)=3-\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\)

Với a, b > 0 ta có: a/b + b/ a > = 2

=> \(\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\ge\frac{1}{4}.\left(3+2+2+2\right)=\frac{9}{4}\)

=> \(VT\le3-\frac{9}{4}=\frac{3}{4}\)

Dấu = xảy ra khi a= b = c => x = y = z 

27 tháng 2 2020

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

27 tháng 2 2020

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

10 tháng 6 2023

Ta cần chứng minh: 

\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)

\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

\(DBXR\Leftrightarrow a=b\)

Do các phép biến đổi tương đương nên (1) luôn đúng

Áp dụng (1), ta có:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Chứng minh tương tự, ta được:

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng từng vế BĐT, ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)

\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)

10 tháng 6 2023

thank