K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

Có:\(x_1+x_2=\dfrac{-b}{a}=m\) ;\(x_1x_2=\dfrac{c}{a}=m-1\)

Vì y1=x12;y2=x22 nên ta có:

\(y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)^2\)

\(=m^2-2\left(m^2-2m+1\right)=-m^2+4m-2\)

\(y_1y_2=x_1^2x_2^2=\left(m-1\right)^2\)

Xét pt : a2y2+b2y+c2=0

Có: \(\dfrac{-b_2}{a_2}=-m^2+4m-2;\dfrac{c_2}{a_2}=m^2-2m+1\)

Chọn a2=1, khi đó ta có pt bậc 2 ẩn y:

\(y^2+\left(m^2-4m+2\right)y+m^2-2m+1=0\)

25 tháng 1 2019

Vì pt luôn có nghiệm với mọi m nên theo hệ thức Vi-ét

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có : \(S_y=y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2m+2\)

          \(P_y=y_1y_2=x_1^2x_2^2=\left(m-1\right)^2=m^2-2m+1\)

Nên pt cần lập có dạng

\(y^2-Sy+P=0\)

\(\Leftrightarrow y^2-\left(m^2-2m+2\right)y+m^2-2m+1=0\)

1 tháng 5 2021

Xin hãy giúp tôi

28 tháng 5 2022

Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`

`=>` Ptr luôn có nghiệm `AA m`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`

Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`

`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`

`<=>A=2[m^2-2(m-3)]-(m-3)`

`<=>A=2(m^2-2m+6)-m+3`

`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`

`<=>A=2(m^2-5/2+15/2)`

`<=>A=2[(m-5/4)^2+95/16]`

`<=>A=2(m-5/4)^2+95/8`

Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`

     Hay `A >= 95/8 AA m`

Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`

Vậy `GTN N` của `A` là `95/8` khi `m=5/4`

28 tháng 5 2022

Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)

NV
21 tháng 3 2022

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

13 tháng 4 2016

(a=2, b=-m, c=m-2)

=>\(b^2-4ac=m^2-4\cdot2\cdot\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2>=0\)

=> pt có luôn có ngiệm với mọi m

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm