K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a.b}{c.d}\) (1)

\(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2\)

=> \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

ADTCDTSBN ta có

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\) (2)

Từ (1) và (2) =>\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) (đpcm)

17 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}\\\dfrac{d}{b}=\dfrac{c}{a}\\\dfrac{d}{c}=\dfrac{b}{a}\end{matrix}\right.\)

14 tháng 1 2023

cho : b2 = ac

đem vào bên trái CMR , tính ra bên phải

11 tháng 2 2018

b,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=>\(\dfrac{bc}{abc}+\dfrac{ac}{bac}+\dfrac{ab}{abc}=0\)

=>\(\dfrac{ab+ac+bc}{abc}=0\)

=>ab+ac+bc=0

=>ab=-ac-bc

ac=-ab-bc

bc=-ab-ac

N=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)

N=\(\dfrac{1}{a^2+bc+bc}+\dfrac{1}{b^2+ca+ca}+\dfrac{1}{c^2+ab+ab}\)

N=\(\dfrac{1}{a^2-ab-ac+bc}+\dfrac{1}{b^2-ab-bc+ca}+\dfrac{1}{c^2-ac-bc+ab}\)

N=\(\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-a\right)-c\left(b-a\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

N=\(\dfrac{1}{\left(a-c\right)\left(a-b\right)}+\dfrac{1}{\left(b-c\right)\left(b-a\right)}+\dfrac{1}{\left(c-b\right)\left(c-a\right)}\)

N=\(\dfrac{b-c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}-\dfrac{a-c}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\dfrac{a-b}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

N=\(\dfrac{b-c-a+c+a-b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)=0

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

24 tháng 6 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

        Do đó ta có:

\(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)

\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)

           Từ (1) và (2) ta có tỉ lệ thức a-b/b = c-d/d

24 tháng 6 2017

VÌ a/b =c/d nên a/b-1=c/d-1 nên a-b/b=c-d/d

a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)

b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)

c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

18 tháng 7 2018

áp dụng cô si ta có :

\(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge\dfrac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}\)

\(=\dfrac{9}{3\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)