K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Xét hiệu \(\left(a_1+a_2+a_3\right)\left(b_1+b_2+b_3\right)-3\left(a_1b_1+a_2b_2+a_3b_3\right)\)        

  \(=a_1\left(b_1+b_2+b_3\right)+a_2\left(b_1+b_2+b_3\right)+a_3\left(b_1+b_2+b_3\right)-3a_1b_1-3a_2b_2-3a_3b_3\)

  \(=a_1\left(b_1+b_2+b_3-3b_1\right)+a_2\left(b_1+b_2+b_3-3b_2\right)+a_3\left(b_1+b_2+b_3-3b_3\right)\)

  \(=a_1\left(b_2+b_3-2b_1\right)+a_2\left(b_1+b_3-2b_2\right)+a_3\left(b_1+b_2-2b_3\right)\)

 \(=a_1\left[\left(b_2-b_1\right)-\left(b_1-b_3\right)\right]+a_2\left[\left(b_3-b_2\right)-\left(b_2-b_1\right)\right]+a_3\left[\left(b_1-b_3\right)-\left(b_3-b_2\right)\right]\)

\(=a_1\left(b_2-b_1\right)-a_1\left(b_1-b_3\right)+a_2\left(b_3-b_2\right)-a_2\left(b_2-b_1\right)+a_3\left(b_1-b_3\right)-a_3\left(b_3-b_2\right)\)

\(=\left(a_1-a_2\right)\left(b_2-b_1\right)+\left(a_3-a_1\right)\left(b_1-b_3\right)+\left(a_2-a_3\right)\left(b_3-b_2\right)\)

Do giả thiết nên dễ thấy từng số hạng trên đều nhỏ hơn 0 nên tổng nhỏ hơn 0 

=> ĐPCM

Dấu "=" khi \(\hept{\begin{cases}a_1=a_2=a_3\\b_1=b_2=b_3\end{cases}}\)

20 tháng 12 2018

Đặt \(f\left(x\right)=\left(a_1x-b_1\right)^2+...+\left(a_nx-b_n\right)^2\)

\(\Rightarrow f\left(x\right)\ge0\) với mọi x

Mặt khác : \(f\left(x\right)=\left(a_1^2+...+a_n^2\right)x^2-2\left(a_1b_1+...+a_nb_n\right)x+\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\Delta'\le0\)

\(\Rightarrow\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_{1^{ }}^2+...+b_n^2\right)}\)

20 tháng 12 2018

Áp dụng bđt bunhia copski, ta có \(\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)\Leftrightarrow\sqrt{\left(a_1b_1+...+a_nb_n\right)^2}\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\Leftrightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)

Dấu bằng xảy ra khi \(\dfrac{a_1}{b_1}=...=\dfrac{a_n}{b_n}\)

Vậy \(\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)

14 tháng 2 2017

Đặt\(c_1=a_1-b_1,c_2=a_2-b_2,c_3=a_3-b_3,c_4=a_4-b_4,c_5=a_5-b_5\)Xét tổng \(c_1+c_2+c_3+c_4+c_5\)

Ta có:\(c_1+c_2+c_3+c_4+c_5\)=\(a_1-b_1+a_2-b_2,+a_3-b_3+a_4-b_4+a_5-b_5=0\)\(\Rightarrow\)Một trong 5 số \(c_1,c_2,c_3,c_4,c_5\) phải có 1 số chẵn

\(\Rightarrow\)\(c_1.c_2.c_3.c_4.c_5⋮2\)

\(\RightarrowĐPCM\)

10 tháng 1 2019

Ta có:

\(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\Rightarrow\left(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}\right)^2=1\)

\(\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}+2\left(\dfrac{a_2b_2}{a_1b_1}+\dfrac{b_2c_2}{b_1c_1}+\dfrac{c_2a_2}{a_1c_1}\right)=1\)

\(\Rightarrow\dfrac{a_2^2}{a^2_1}+\dfrac{b^2_2}{b^2_1}+\dfrac{c^2_2}{c^2_1}+2\left(\dfrac{a_2b_2c_1+b_2c_2a_1+c_2a_2b_1}{a_1b_1c_1}\right)=1\)(1)

Theo giả thiết:

\(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\Leftrightarrow\dfrac{a_1b_2c_2+b_1a_2c_2+c_1a_2b_2}{a_2b_2c_2}=0\)(2)

Từ (1) và (2) suy ra đpcm

10 tháng 1 2019

Đặt \(\dfrac{a_1}{a_2}=p;\dfrac{b_1}{b_2}=q;\dfrac{c_1}{c_2}=r\), có:

\(p+q+r=0\) (1)

\(\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r}=1\) (2)

Từ (2) => \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}+2\dfrac{p+q+r}{pqr}=1\)

Kết hợp với (1), ta được: \(\dfrac{1}{p^2}+\dfrac{1}{q^2}+\dfrac{1}{r^2}=1\Rightarrow\dfrac{a^2_2}{a^2_1}+\dfrac{b^2_2}{b_1^2}+\dfrac{c_2^2}{c^2_1}=1\left(đpcm\right)\)

15 tháng 4 2018

mày bị điên đứa nào thích thì mà đứa nào chơi truy kích cho tao nick

31 tháng 3 2017

Giải:

Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_5=a_5-b_5\)

Xét tổng \(c_1+c_2+c_3+c_4+c_5\) ta có:

\(c_1+c_2+c_3+c_4+c_5\)

\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_5-b_5\right)\)

\(=0\)

\(\Rightarrow c_1;c_2;c_3;c_4;c_5\) phải có một số chẵn

\(\Rightarrow c_1.c_2.c_3.c_4.c_5⋮2\)

Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_5-b_5\right)⋮2\) (Đpcm)