K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Giải nhanh dùm mem đi

27 tháng 12 2016

phan h nhan vo la duoc

1 tháng 2 2017

22 tháng 5 2022

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

11 tháng 12 2022

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

17 tháng 9 2017

Biến đổi like that:

\(VT=\sum\dfrac{1}{ab}=\sum\dfrac{ab+bc+ca}{ab}=\sum\left(\dfrac{c}{a}+\dfrac{c}{b}\right)+3\)

nên chỉ cần :\(\sum\left(\dfrac{c}{a}+\dfrac{c}{b}\right)\ge\sum\sqrt{\dfrac{1}{a^2}+1}=\sum\dfrac{\sqrt{a^2+1}}{a}\)

Áp dụng AM-GM:

\(\dfrac{\sqrt{a^2+1}}{a}=\dfrac{\sqrt{a^2+ab+bc+ca}}{a}=\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{a}\le\dfrac{2a+b+c}{2a}\)

Áp dụng tương tự:

\(VP=\sum\dfrac{\sqrt{a^2+1}}{a}\le\sum\dfrac{2a+b+c}{2a}=3+\dfrac{1}{2}\sum\left(\dfrac{b}{a}+\dfrac{c}{a}\right)\)

BĐT đúng khi ta chứng minh được

\(VT=\sum\left(\dfrac{c}{a}+\dfrac{c}{b}\right)\ge3+\dfrac{1}{2}\sum\left(\dfrac{c}{a}+\dfrac{c}{b}\right)\)

Điều này hiển nhiên đúng theo AM-GM:

\(\dfrac{1}{2}\sum\left(\dfrac{c}{a}+\dfrac{c}{b}\right)=\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}\right)\ge\dfrac{1}{2}.6\sqrt[6]{\dfrac{a^2b^2c^2}{a^2b^2c^2}}=3\)

\(\Rightarrow\)đpcm

Dấu = xảy ra khi a=b=c

22 tháng 7 2019

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

Tương tự,cộng theo vế và rút gọn =>đpcm

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt CÔ si

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

.............

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)