K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

a)

TH1. nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|\ge\left|x+0\right|=\left|x\right|\\\left|y\right|\ge\left|0+y\right|=\left|y\right|\end{matrix}\right.\) hiển nhiên đúng

TH2.với x, y khác 0

x.y>0 nghĩa là x, y cùng dấu

\(\left|x+y\right|=\left|-x-y\right|=\left|x\right|+\left|y\right|\)

x.y<0 nghĩa là x, y trái dấu

\(\left|x+y\right|=\left|\left|x\right|-\left|y\right|\right|\)

Nếu \(\left|x\right|\ge\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|x\right|-\left|y\right|\)(1)

Nếu \(\left|x\right|\le\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|y\right|-\left|x\right|\)(2)

hiển nhiển \(\left|x\right|+\left|y\right|\) luôn lơn hơn (1) và (2)

TH1 và TH2 => dpcm

b) x,y,z,t có vai trò như nhau đối VT =>

không mất tính tổng quát g/s: \(\left|x\right|\ge\left|y\right|\ge\left|z\right|\ge\left|t\right|\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=\left|x\right|-\left|y\right|\\\left|y-z\right|=\left|y\right|-\left|z\right|\\\left|z-t\right|=\left|z\right|-\left|t\right|\\\left|t-x\right|=\left|x\right|-\left|t\right|\end{matrix}\right.\)

Cộng lại

VT =\(2\left(\left|x\right|-\left|t\right|\right)\) vậy VT luôn là một số chẵn VP là số lẻ => vô nghiệm

25 tháng 3 2016

Từ hệ thức :

\(y=tx+\left(1-t\right)z\)

Bất đẳng thức 

\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)

Trở thành :

\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)

hay 

\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)

Vận dụng bất đẳng thức tam giác cho 

\(y=\left(1-t\right)x+tx\) ta có kết quả

Bất đẳng thức thứ hai, được chứng minh tương tự bởi

\(y=tx+\left(1-t\right)z\)

tương đương với :

\(y-x=\left(1-t\right)\left(z-x\right)\)

 

17 tháng 3 2019

\(\left|x+y\right|\) cùng tính chẵn lẻ với \(x+y\)

\(\left|y-z\right|\) cùng tính chẵn lẻ với \(y-z\)

\(\left|z-t\right|\) cùng tính chẵn lẻ với \(z-t\)

\(\left|t-x\right|\) cùng tính chẵn lẻ với \(t-x\)

'\(\Rightarrow\left|x+y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng tính chẵn lẻ với \(x+y+y-z+z-t+t-x=2y⋮2\)

\(2011⋮̸2\rightarrow ptvn\)

19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

x,y,z,t là các số nguyên hay sao vậy bạn?

 

Vì :

| x - y | cùng tính chất chẵn lẻ với x - y

| y - z | cùng tính chất chẵn lẻ với y - z

| z - t | cùng tính chất chẵn lẻ với z - t

| t - x | cùng tính chất chẵn lẻ với t - x 

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)

Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)

là số chẵn 

= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn 

Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)

= > không có các số thỏa mãn 

16 tháng 5 2018

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

16 tháng 5 2018

Nguồn : Trần Thắng