K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

câu hỏi? 

9 tháng 8 2021

Tìm min

 

Bạn nên đánh lại rõ ràng hơn, có phần hỗ trợ để đánh công thức toán bạn nhé, hoặc bạn chụp hình rồi gửi lên cũng được.

AH
Akai Haruma
Giáo viên
20 tháng 6 2018

Lời giải:

Áp dụng BĐT AM-GM cho các số dương:

\(a^2+bc\geq 2\sqrt{a^2bc}; b^2+ac\geq 2\sqrt{b^2ac}; c^2+ab\geq 2\sqrt{c^2ab}\)

Do đó:

\(\text{VT}=\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}\)

hay \(\text{VT}\leq \frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}(*)\)

Tiếp tục áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \sqrt{bc}\leq \frac{b+c}{2}\\ \sqrt{ac}\leq \frac{a+c}{2}\\ \sqrt{ab}\leq \frac{a+b}{2}\end{matrix}\right.\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq a+b+c(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\leq \frac{a+b+c}{2abc}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

10 tháng 1 2017

Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)

Tương tự ta có:

\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Cộng theo vế ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi \(a=b=c\)

18 tháng 1 2019

Ta có:

\(\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{a^2bc}}=\dfrac{1}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2abc}\)

Tương tự:

\(\Rightarrow VT\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi a=b=c

NV
1 tháng 12 2018

\(VT=\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(VT\le\dfrac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2abc}\)

Mặt khác ta luôn có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)

\(\Rightarrow2\left(a+b+c\right)-2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\ge0\)

\(\Rightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le a+b+c\)

\(\Rightarrow VT\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi \(a=b=c\)