K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Đặt A=\(\left|2x-3y\right|+\left|4z-3x\right|+\left|xy+yz+xz-2484\right|\)

Ta có \(\left|2x-3y\right|\ge0;\left|4z-3x\right|\ge0;\left|xy+yz+xy-2484\right|\ge0\)

\(\Rightarrow A\ge0\Rightarrow Amin=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\4z-3x=0\\xy+yz+xz-2484=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{12}=\frac{y}{8}\left(1\right)\\\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\left(2\right)\\xy+yz+xz=2484\left(3\right)\end{cases}}}\)

Từ (1)(2)\(\Rightarrow\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=k\left(k\ne0\right)\)

\(\Rightarrow x=12k;y=8k;z=9k\)

Thay vào 3 ta có \(12.8.k^2+8.9.k^2+12.9.k^2=2484\)

\(\Rightarrow k^2\left(12.8+8.9+12.9\right)=2484\)

\(\Rightarrow k^2.276=2484\)

\(\Rightarrow k^2=9=\left(\pm3\right)^2\)

\(\Rightarrow k=\pm3\)

+Nếu k =3 thì      x=36          ;                  y=24                        ;                      z=27

+Nếu k = -3thì    x=-36          ;                   y=-24                      ;                        z=-27

Vậy \(Amin=0\Leftrightarrow\left(x;y;z\right)\in\left\{\left(36;24;27\right);\left(-36;-24;-27\right)\right\}\)

6 tháng 9 2020

C1 : Ta sẽ chứng minh bất đẳng thức sau : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Suy ra được : \(x^2+y^2+z^2\ge xy+yz+zx=1< =>\left(x^2+y^2+z^2\right)^2\ge1\)

\(< =>x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\ge1\)(*)

Bất đẳng thức chứng minh có thể viết theo dạng : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

\(< =>2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)< =>2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : \(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2+2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2+1\)

\(< =>3\left(x^4+y^4+z^4\right)+2\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge1\)

\(< =>3\left(x^4+y^4+z^4\right)\ge1< =>x^4+y^4+z^4\ge\frac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)

6 tháng 9 2020

C2 : Ta có : \(x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)

Sử dụng bất đẳng thức \(a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

Khi đó : \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)

\(=\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\)(*)

Ta sẽ chứng minh bất đẳng thức phụ sau : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Áp dụng bất đẳng thức trên ta được :

 \(\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\ge\frac{2}{3}\left(xy+yz+zx\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)( Do \(xy+yz+zx=1\)) (**)

Từ (*) và (**) suy ra \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

Hay \(x^4+y^4+z^4\ge\frac{1}{3}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)

25 tháng 2 2017

Cách giải khác:

Dư đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta được \(P_{Min}=1\)

Thật vậy cần chứng minh \(Σ\frac{1}{4x^2-yz+2}\ge1\LeftrightarrowΣ\left(\frac{1}{4x^2-yz+2}-\frac{1}{3}\right)\ge0\)

\(\LeftrightarrowΣ\frac{1-4x^2+yz}{4x^2-yz+2}\ge0\LeftrightarrowΣ\frac{xy+xz+2yz-4x^2}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\frac{\left(z-x\right)\left(2x+y\right)-\left(x-y\right)\left(2x+z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(z^2+2xy+2\right)\left(z^2-xy+2\right)\ge0\)

25 tháng 2 2017

3/2 nha

19 tháng 5 2021

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

19 tháng 5 2021

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

NV
5 tháng 2 2021

\(4x^2+4y^2\ge8xy\)

\(16x^2+z^2\ge8zx\)

\(16y^2+z^2\ge8yz\)

Cộng vế với vế:

\(20x^2+20y^2+2z^2\ge8\left(xy+yz+zx\right)\)

\(\Leftrightarrow10x^2+10y^2+z^2\ge4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

5 tháng 2 2021

Em cảm ơn thầy ạ.

3 tháng 6 2016

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

29 tháng 5 2022

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)

2 tháng 7 2021

b, đk: \(x\ge1,y\ge2,z\ge3\)

\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)

B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)

\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)

\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)

dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)

 

NV
2 tháng 7 2021

Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0

\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)

\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)

\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)