K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)

và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)

Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)

\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)

Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)

Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)

8 tháng 5

a + b + c = 0 

=> a+b=-c

a3   + b3  +c3  = a^3 + b^3 +3a^2b +3ab^2 -3a^2b-3ab^2 +c^3

                      = (a+b)^3 -3ab(a+b)+c^3

                       = -c^3 +3abc+c^3

                        = 3abc

=> a^3+b^3+c^3 = 3abc

23 tháng 11 2018

y x O 1 3 C(3;1) A(2;0) B(0;-2) H

Kẻ CH⊥Ox

Ta có OB=\(\left|-2\right|=2\)

OA=\(\left|2\right|=2\)

\(OH=\left|3\right|=3\)

CH=\(\left|1\right|=1\)

Xét △OAB vuông tại O có

OA=OB=2

Suy ra △OAB vuông cân tại O

\(\Rightarrow\widehat{OAB}=45^0\)(1)

Ta có OH=AH+OA\(\Leftrightarrow AH=AH-OA=3-2=1\)

Xét △CHA vuông tại H có

AH=CH=1

Suy ra △CHA vuông cân tại H

\(\Rightarrow\)\(\widehat{CAH}=45^0\)(2)

Từ (1),(2)\(\Rightarrow\widehat{OAB}=\widehat{CAH}=45^0\)(3)

Mà O,A,H thẳng hàng(4)

Từ (3),(4)\(\Rightarrow\widehat{OAB}\)\(\widehat{CAH}\) là hai góc đối đỉnh

\(\Rightarrow\)A,B,C thẳng hàng

23 tháng 11 2022

\(\overrightarrow{AB}=\left(-2;-2\right)\)

\(\overrightarrow{AC}=\left(1;1\right)\)

Vì -2/1=-2/1

nên A,B,C thẳng hàng

30 tháng 11 2016

a2+b2-c= (a+b+c)2 - 2(a+c)(b+c) = -2(a+b)(b+c) = -2(a+b+c-b)(a+b+c-a) = -2ab

làm tương tự với 2 mẫu còn lại. Đến đây chắc em hiểu rồi phải không.

17 tháng 7 2017

Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

ĐÚng với a+b+c=0

20 tháng 11 2021

K có đ/a toii thỏa mãn

6 tháng 7 2016

Áp dụng bất đẳng thức  a^2+b^2+c^2 > ab+bc+ac ta có : 

a^8 + b^8 + c^8 > (ab)^4 + (bc)^4 + (ca)^4 > (ab)^2.(bc)^2 + (bc)^2.(ca)^2 + (ca)^2.

(ab)^2 
> ab.bc.bc.ca + bc.ca.ca.ab + ca.ab.ab.bc = a^2.b^2.c^2(bc + ab + ac) 


\(\Rightarrow\)  (a^8 + b^8 + c^8)/(a^3.b^3.c^3) > a^2.b^2.c^2(ab + bc + ca)/(a^3.b^3.c^3) = (ab + bc

+ ca)/abc = 1/a + 1/b + 1/c 

\(\Rightarrow\) a^8 + b^8 + c^8 > (abc)^3 + (1/a + 1/b + 1c) (đpcm)

6 tháng 7 2016

Ta có : \(a^8+b^8+c^8\ge\left(abc\right)^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (1)

\(\Leftrightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Áp dụng bất đẳng thức phụ : \(x^2+y^2+z^2\ge xy+yz+zx\) (có thể chứng minh bằng biến đổi tương đương)

Được : \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge a^4b^4+b^4c^4+c^4a^4\)(2)

Lại có : \(a^4b^4+b^4c^4+c^4a^4=\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ac\right)\) (3)

Từ (2) và (3) ta có : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Vậy (1) được chứng minh.