Giúp tôi giải toán và làm văn


phạm văn tuấn 03/05/2018 lúc 19:27
Báo cáo sai phạm

một bể cá dạng hình hộp chữ nhật có chiều dài 3m chiều rộng 2m và chiều cao 1,5m trong bể có chứa một thể tích nước bằng 2\3 thể h của bể 1lít= 1dm3

@_@

Đọc tiếp...
HQL 03/03/2018 lúc 20:41
Báo cáo sai phạm

một bể cá dạng hình hộp chữ nhật có chiều dài 3m chiều rộng 2m và chiều cao 1,5m trong bể có chứa một thể tích nước bằng 2\3 thể h của bể 1lit= 1dm3

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 01/12/2017 lúc 10:58
Báo cáo sai phạm

Bài 1:

A B C D E M N I J

Gọi E là giao điểm của phân giác AD với MN.

Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)

Gọi H là điểm đối xứng với M qua AD.

Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.

Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.

Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:

\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)

Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)

\(\Rightarrow AJ=\frac{2a}{3}\)

Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.

\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.

Tóm lại MN luôn đi qua trọng tâm tam giác ABC.

Đọc tiếp...
trần thành đạt 02/12/2017 lúc 20:23
Báo cáo sai phạm

giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 23/08/2016 lúc 10:19
Báo cáo sai phạm

Đây là một bài toán rất hay :)

???ng tr�n O_1: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng f: ?o?n th?ng [N, A] ?o?n th?ng g: ?o?n th?ng [N, B] ?o?n th?ng i: ?o?n th?ng [I, M] ?o?n th?ng l: ?o?n th?ng [A, N'] ?o?n th?ng m: ?o?n th?ng [N', N] ?o?n th?ng n: ?o?n th?ng [I', I] ?o?n th?ng p: ?o?n th?ng [B, N'] O = (0.48, 0.62) O = (0.48, 0.62) O = (0.48, 0.62) ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M_1: Giao ?i?m c?a h, j ?i?m M_1: Giao ?i?m c?a h, j ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l

Gọi N' = OB giao (O); I' là trung điểm AN'. Vậy I' cố định.

Xét tam giác AMN có: 

I'A = I'N'

AI = IN

nên I'I là đường trung bình hay I'I // N'N (1).

Lại có: do BN' là đường kính nên \(\widehat{N'NB}=90^o\), mà \(\widehat{IMN}=90^o\), vì thế IM // NN' (2).

Từ (1) và (2) suy ra I' , I , M  luôn thẳng hàng hay MI luôn đi qua điểm cố định I'.

b. Ta thấy I' cố định, B cũng cố định mà \(\widehat{I'MB}=90^o\) nên M thuộc đường tròn đường kinh I'B.

Đó là một đường tròn cố định, đây là hình vẽ minh họa chứng minh của cô:

???ng tr�n O_1: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng f: ?o?n th?ng [N, A] ?o?n th?ng g: ?o?n th?ng [N, B] ?o?n th?ng i: ?o?n th?ng [I, M] ?o?n th?ng l: ?o?n th?ng [A, N'] ?o?n th?ng m: ?o?n th?ng [N', N] ?o?n th?ng n: ?o?n th?ng [I', I] ?o?n th?ng p: ?o?n th?ng [B, N'] O = (0.48, 0.62) O = (0.48, 0.62) O = (0.48, 0.62) ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m A: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m B: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m N: ?i?m tr�n O_1 ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m I: Trung ?i?m c?a f ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M: Giao ?i?m c?a h, g ?i?m M_1: Giao ?i?m c?a h, j ?i?m M_1: Giao ?i?m c?a h, j ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m N': Giao ?i?m c?a O_1, k ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l ?i?m I': Trung ?i?m c?a l

Đọc tiếp...
SKTS_BFON 23/01/2017 lúc 12:42
Báo cáo sai phạm

tôi, có, xem. ( giải trí )

Đọc tiếp...
Haibara Ai 23/01/2017 lúc 12:42
Báo cáo sai phạm

ừm,mk ko xem

mk chỉ xem magic kid thôi
 

Đọc tiếp...
Dương Thu Hiền 23/01/2017 lúc 12:52
Báo cáo sai phạm

Otaku nek ! Hơi thích thôi, mình thích đoạn Goku hồi nhỏ hơn, đọc cười !

Đọc tiếp...
Trần Quốc Đạt 11/01/2017 lúc 05:25
Báo cáo sai phạm

Lên mạng dò "Định lí Lyness" và "Đường tròn Sawayama" để biết thêm chi tiết.

Đọc tiếp...
Trần Quốc Đạt 11/01/2017 lúc 05:29
Báo cáo sai phạm

Thôi nói đại luôn cho rồi...

Gọi \(I\) là tâm nội tiếp tam giác \(ABC\).

Qua \(I\) vẽ \(EF⊥AI\) trong đó \(E\in AB,F\in AC\).

Dựng điểm \(K\) sao cho \(KE⊥AB,KF⊥AC\).

Đường tròn \(\left(K,KE\right)\) là đường tròn cần dựng.

CM: Theo định lí Lyness về đường tròn mixtillinear (tự tìm trên mạng) thì đường tròn tiếp xúc 2 cạnh của tam giác ABC tại \(E\) và \(F\)và tiếp xúc trong \(\left(ABC\right)\) phải có \(EF\) qua tâm nội tiếp \(I\) của tam giác. Điều ngược lại vẫn thoả.

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 15/11/2016 lúc 11:24
Báo cáo sai phạm

Đường tròn O_1: Đường tròn qua E với tâm O Đoạn thẳng a: Đoạn thẳng [A, B] Đoạn thẳng b: Đoạn thẳng [O, A] Đoạn thẳng e: Đoạn thẳng [A, N] Đoạn thẳng f_1: Đoạn thẳng [H, N] Đoạn thẳng i_1: Đoạn thẳng [O, J] Đoạn thẳng j_1: Đoạn thẳng [J, B] Đoạn thẳng k_1: Đoạn thẳng [J, N] O = (-0.33, -2.81) O = (-0.33, -2.81) O = (-0.33, -2.81) Điểm A: Điểm trên O_1 Điểm A: Điểm trên O_1 Điểm A: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm M: Điểm trên a Điểm M: Điểm trên a Điểm M: Điểm trên a Điểm H: Giao điểm của d, b Điểm H: Giao điểm của d, b Điểm H: Giao điểm của d, b Điểm N: Giao điểm của O_1, d Điểm N: Giao điểm của O_1, d Điểm N: Giao điểm của O_1, d Điểm J: Giao điểm của O_1, h_1 Điểm J: Giao điểm của O_1, h_1 Điểm J: Giao điểm của O_1, h_1

Kéo dài AO cắt đường tròn (O) tại J, từ đó suy ra AJ là đường kính hay \(\widehat{ABJ}=\widehat{ANJ}=90^o\) .

Ta thấy ngay \(\Delta AMH\sim\Delta AJB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AM}{AJ}\Rightarrow AH.AJ=AB.AM\) (không đổi).

Xét tam giác vuông ANJ, áp dụng hệ thức lượng ta có: \(AN^2=AH.AJ=AM.AB\) (không đổi)

Vậy AN luôn không đổi và \(AN=\sqrt{AM.AB}\).

Đọc tiếp...
Thái Viết Nam 15/11/2016 lúc 19:52
Báo cáo sai phạm

Cô Huyền làm đúng rồi

Đọc tiếp...
Hoàng Lê Bảo Ngọc CTV 02/11/2016 lúc 12:21
Báo cáo sai phạm

A B C d h H a

Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.

Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.

Vậy có đpcm

Đọc tiếp...
a@olm.vn Quản lý 29/10/2016 lúc 10:55
Báo cáo sai phạm

A B I O O' M X Y Z

Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.

Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.

Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.

=> OX + OY = 1/2 AB là đại lượng không đổi

MZ là đường trung bình của hình thang O'YXO

=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB

Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).

Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB

Đọc tiếp...
phạm ngọc khuê 30/10/2016 lúc 20:03
Báo cáo sai phạm

đáp án là M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB 

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 25/08/2016 lúc 13:49
Báo cáo sai phạm

Ta thấy \(\widehat{FEA}=\widehat{BED}=90^o-\widehat{EBD}\)

Tương tự: \(\widehat{EFA}=90^o-\widehat{FCD}\)

Mà \(\widehat{EBD}=\widehat{FCD}\) nên \(\widehat{FEA}=\widehat{EFA}\). Vậy tam giác AEF cân tại A. Do AM là trung tuyến nên suy ra AM cũng là đường cao hay AM // BC.

Từ đó suy ra M chuyển động trên đường thẳng qua A, song song với BC.

Đọc tiếp...
Nguyễn Trần Bích Châu 25/08/2016 lúc 21:05
Báo cáo sai phạm

Cô Huyền ơi em muốn lấy lại nick, có bạn dò ra mật khẩu nick em và đổi rồi ạ huhu

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 25/05/2016 lúc 15:03
Báo cáo sai phạm

Đây là bài toán về đường tròn Apollonius tỉ số k dựng trên đoạn AB. Ta giải như sau:

D A C B M I K

 Trường hợp 1: k = 1. Khi đó ta thấy ngay MA = MB. Vậy quỹ tích những điểm M chính là đường trung trực của AB.

Trường hợp 2:  \(k\ne1\).

Phần thuận. Gọi C, D là các điểm chia trong và chia ngoài đoạn thẳng AB theo tỉ số k. Ta có \(\frac{CA}{CB}=\frac{DA}{DB}=k\) (C nằm giữa A, B và D nằm ngoài đọan AB). Khi đó nếu M trùng C, D thì thỏa mãn đẳng thức.

Nếu M khác C và D. Ta có \(\frac{MA}{MB}=\frac{CA}{CB}=\frac{DA}{DB}\) nên MC, MD lần lượt là phân giác trong và phân giác ngoài của góc AMB. Do đó góc CMD = 90 độ hay M thuộc đường tròn đường kính CD.

Phần đảo. Lấy M bất kì thuộc đường tròn đường kính CD. Nếu M trùng C hoặc D thì xong.

Nếu M khác C và D. Qua A vẽ đuờng thẳng vuông góc với MC cắt MB tại I và cắt MC tại K. Ta có \(\frac{AI}{MD}=\frac{BA}{BD}=1-k\) . Vì \(k=\frac{DA}{DB}=\frac{CA}{CB}=\left(DC-2AC\right)\left(DB-BC\right)=1-\frac{2CA}{CD}\)nên \(\frac{AK}{MD}=\frac{AC}{CD}=\)\(\frac{1-k}{2}\) .Do đó AI = 2.AK, suy ra K là trung điểm AI, suy ra MI = MA. Từ đó \(\frac{MA}{MB}=\frac{MI}{MB}=\frac{DA}{DB}=k\).  Vậy với k ≠ 1, quỹ tích những điểm M thỏa mãn \(\frac{MA}{MB}=k\) là đường tròn đường kính CD.

Chúc em học tốt :)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: