Dăm ba mấy cái định lý hàm số cos em chẳng hiểu gì cả :((
Từ A kẻ \(AH\perp BC\left(H\in BC\right)\)
Khi đó biến đổi qua 1 số bước đơn giản ta được:
\(b^2=AC^2=AH^2+CH^2\)
\(=\left(AB^2-HB^2\right)+\left(BC+BH\right)^2\)
\(=\left(c^2-BH^2\right)+\left(a+BH\right)^2\)
\(=c^2-BH^2+a^2+2\cdot a\cdot BH+BH^2\)
\(=a^2+c^2+2\cdot a\cdot BH\)
\(=a^2+c^2+2ac\cdot\cos\widehat{HBA}\)
\(=a^2+c^2+2ac\cdot\cos\left(180^0-\widehat{ABC}\right)\)
\(=a^2+c^2+2ac\cdot\cos\left(180^0-\widehat{B}\right)\)
Vậy khi góc B > 90 độ thì \(b^2=a^2+c^2+2ac\cdot\cos\left(180^0-\widehat{B}\right)\)
Cái này được suy ra từ định lí hàm số cos:
trong \(\Delta ABC\)thì \(b^2=a^2+c^2-2ac.\cos B\)
Với \(\Delta ABC\)có góc \(B\)tù thì \(\cos B=-\cos\left(180-\widehat{B}\right)\)
nên khi đó ta có thể viết lại:
\(b^2=a^2+c^2-2ac\left[-\cos\left(180-\widehat{B}\right)\right]\)\(\Rightarrow b^2=a^2+c^2+2ac.\cos\left(180^o-\widehat{B}\right)\)
Cái này là công thức hàm số cos nha
Hàm số cos theo em tới lớp 11 12 luôn nha ( bài tập vật lí 11 12 )
Lên lớp 10 sẽ học
Còn chứng minh quên rồi
Cho tam giác ABC có A = 90o , AB<AC. Kẻ đường cao AH. Kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC) a) C/n: góc AEF = góc ACB
b) Gọi S là giao điểm của EF với BC
C/m: SE.SF=SB.SC\
c) Gọi M là trung điểm của BC, qua A kẻ đường // với EF cắt BC tại P.
C/m: HP.HM=HB.HC và PA2=PB.PC
Đọc tiếp...
Mình chịu thua thôi!!!
1. Gọi I chính là giao điểm của BD và AC. Ta có: AB = BC = DC = AD = AH + BH = 7+2 = 9(cm)
Xét\(\Delta AHD\left(\widehat{AHD}=90^0\right)\) theo định lý py - ta - go ta có :
\(HD=\sqrt{AD^2-AH^2}=\sqrt{9^2-7^2}=4\sqrt{2}cm\)
Xét\(\Delta BHD\left(\widehat{BHD=90^O}\right)\)theo định lý py - ta - go ta có :
\(BD=\sqrt{HD^2+BH^2}=\sqrt{\left(4\sqrt{2}\right)^2+2^2}=6cm\)
BI = DI =\(\frac{BD}{2}=\frac{6}{2}=3cm\). Xét\(\Delta AID\left(\widehat{AID}=90^O\right)\)theo định lý py - ta - go ta có :
\(AI=\sqrt{AD^2-DI^2}=\sqrt{9^2-3^2}=6\sqrt{2cm}\)
AC = AI.2 =\(6\sqrt{2}.2=12\sqrt{2}\)=> SABCD =\(\frac{1}{2}.\left(BD.AC\right)=\frac{1}{2}.\left(6.12\sqrt{2}\right)=36\sqrt{2}cm\)
Ap dung he thuc luong trong tam giac vuong \(ABC;ABH;ACH\) ta co:
\(BE\cdot BA=BH^2;CF\cdot CA=CH^2;BH.HC=AH^2\)
\(\Rightarrow CF\cdot CA\cdot BE\cdot BA=\left(CH\cdot BH\right)^2=AH^4\)
Mat khac:\(AB\cdot AC=AH\cdot BC\) . Khi do:
\(CF\cdot BE\cdot AH\cdot BC=AH^4\Rightarrow CF\cdot BE\cdot BC=AH^3\)
Vay ta co dpcm
Xét \(\Delta OBC\)có: OH _|_ BC
=> \(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)hay \(\frac{1}{h^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)(*)
\(AC=m\Rightarrow OC=\frac{1}{2}AC=\frac{1}{2}m\)
\(BD=n\Rightarrow OB=\frac{1}{2}BD=\frac{1}{2}n\)
Thay vào pt (*) => \(\frac{1}{h^2}=\frac{1}{\left(\frac{1}{2}m\right)^2}+\frac{1}{\left(\frac{1}{2}n\right)^2}=\frac{4}{m^2}+\frac{4}{n^2}\)
\(\Rightarrow\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)
1)Từ đỉnh B tù của hình bình hành ABCD, kẻ đường cao BK vuông góc với AD và BI vuông góc với CD. Gọi H là trực tâm của tam giác BIK. Tính BH, biết BD= căn 55 và IK= căn 19cm
2)Cho tam giác ABC, AB=1, góc BAC=105, góc ABC=60. Trên cạnh BC lấy E sao cho BE=1. Vẽ ED song song với AB. CMR 1/AC^2+1/AD^2=4/3
Bạn nào được thì giúp mình nhanh chút nhá, sắp phải nộp rồi:)
Thank you!
Đọc tiếp...Được cập nhật 14 tháng 6 2020 lúc 18:22
Cho tam giác ABC AB=c, BC=a, CA=b. D là đường phân giác của góc A thuộc BC. M là trung điểm của BC. E là 1 điểm bất kì trên cạnh BC.
a) Tính độ dài đoạn phân giác AB
b) Tính độ dài đoạn AM
c)CM đẳng thức sau: \(AB^2.CE+AC^2.BE=BC\left(AB^2+BE.EC \right)\)
Đọc tiếp...Được cập nhật 21 tháng 4 2020 lúc 21:17
Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)
\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)
Dấu "=" xảy ra khi S1 =S2=S3 <=> M là trọng tâm \(\Delta ABC\)
Vì OI _|_ AB tại I, OK _|_ AC tại K. Do đó: \(AI=AK=\frac{a}{2}\)
Trên tia đối của tia IA lấy F sao cho IF=EK
Đặt AD=x, AE=y
Chứng minh được \(DE=\sqrt{x^2+y^2-xy}\)
Ta có: \(\frac{1}{BD}+\frac{1}{CE}=\frac{3}{a}\Rightarrow\frac{1}{a-x}+\frac{1}{a-y}=\frac{3}{a}\)
=> a2-2(x+y)a+3xy=0
Từ gt có: x+y < a; a=x+y+\(\sqrt{x^2+y^2-xy}\)
AI+AK=AD+AE+DE; DI+EK=DE
DF=DE => OI=OH => AB=MN
Từ đó chứng minh BMNC là hình thang cân
Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)
Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)
=> BDEF và CDEG là các tứ giác nội tiếp
Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG
Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)
Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)
=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)
Đẳng thức xảy ra khi và chỉ khi
BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC
Tính diện tích cạnh của hình tám cạnh đều theo bán kính R của đường tròn ngoại tiếp hình đó
Đọc tiếp...Được cập nhật 9 tháng 4 2020 lúc 22:18
Giả sử AB là 1 cạnh của hình tám cạnh đều, gọi AB=a.
Vẽ AK là đường co của tam giác OAB
Ta có: \(\widehat{AOB}=\frac{360^o}{8}=45^o\Rightarrow OK=AK=\sin45^o=\frac{OA\sqrt{2}}{2}=\frac{R\sqrt{2}}{2}\)
Nên KB=OB-OK=\(\frac{R\sqrt{2}}{2}-R=R\left(\frac{\sqrt{2}}{2}-1\right)\)
Xét tam giác KAB vuông tại K, theo định lý Pytago ta có:
\(AB^2=AK^2+KB^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[R\left(\frac{\sqrt{2}}{2}-1\right)\right]^2\)
\(AB^2=R^2\left(\frac{1}{2}+\frac{1}{2}-\sqrt{2}+1\right)\)
\(\Rightarrow AB^2=\left(2-\sqrt{2}\right)R^2\)
\(\Rightarrow AB=\sqrt{2-\sqrt{2}}R\)
Cot B = \(\frac{AB}{AC}\Rightarrow AB=cotB.AC\)
\(\Rightarrow AB=2,4.5=12\left(cm\right)\)
\(BC^2=AB^2=12^2+5^2=169\)
\(\Rightarrow BC=\sqrt{169}=13cm\)
b) sin C \(\frac{AB}{BC}=\frac{12}{13}\)
cos C = \(\frac{AC}{BC}=\frac{5}{13}\)
tan C = \(\frac{AB}{AC}=\frac{12}{5}\)
cot C = \(\frac{AC}{AB}=\frac{5}{12}\)
Chúc bạn học tốt !!!
\(\cos42\approx0,743\)
\(\tan42\approx0,900\)
Vậy: Tan42 > Cos42
Không dùng máy tính cầm tay nha bạn -.-
...
Dưới đây là những câu có bài toán hay do Online Math lựa chọn.
....