Giúp tôi giải toán


Hoàng Lê Bảo Ngọc CTV 24/10/2016 lúc 11:20

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được : 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)

Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

Nguyen ngoc dat 24/10/2016 lúc 14:14

Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c 

Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y  , ta được : 

1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b 

1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c 

1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a 

Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )

⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b  ≥ 1 / a + 1 / b + 1 / c 

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

alibaba nguyễn 17/04 lúc 19:03

Ta có:

x2​y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0

\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0

\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)

Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.

ke ___ bac ___ tinh 21/04 lúc 11:46

ta có :

\(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)

\(\Leftrightarrow\left(x^2y+zx^2-x^3\right)+\left(y^2z+xy^2-y^3\right)+\left(z^2x+z^2y-z^3>0\right)\)

\(\Leftrightarrow x^2\left(y+z-x\right)+y^2\left(z+x-y\right)+z^2\left(x+y-z\right)>0\left(dung\right)\)

vì x;y;z là 3 cạnh của tam giác nên tổng hai cạnh lớn hơn cạnh còn lại

Hoàng Thanh Ngân 19/04 lúc 18:53

mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi

TXT Channel Funfun 11/04/2017 lúc 10:01

Ta coi diện tích cũ là 100% thì diện tích hình đó lúc sau là :

100% + 4% = 104% (diện tích cũ)

Ta coi chiều rộng cũ là 100% thì chiều rộng mới là :

100% + 30% = 130% (chiều rộng cũ)

Chiều dài mới là :

104% : 130% = 80% (chiều dài cũ)

Ta coi chiều dài cũ là 100% thì chiều dài mới giảm là :

100% - 80% = 20% (chiều dài cũ)

Chiều dài cũ là :

2,4 : 20% = 12 (m)

Chiều dài mới là :

12 - 2,4 = 9,6 (m)

Đáp số : 9,6 m

tth 11/04/2017 lúc 09:32

Khó quá!

Bạn nào giải được,giúp mình giải với

Chúc bạn học tốt

Mình cũng đang vướng bài này

^.^

Edogawaconan 11/04/2017 lúc 09:33

Mình đang gấp ai giải được mình tk.

alibaba nguyễn 22/11/2016 lúc 14:14

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\frac{1}{r^2}=\frac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\frac{1}{\left(p-a\right)\left(p-b\right)}+\frac{1}{\left(p-b\right)\left(p-c\right)}+\frac{1}{\left(p-a\right)\left(p-c\right)}\)

\(\Leftrightarrow\frac{1}{r^2}=4\left(\frac{1}{\left(b+c-a\right)\left(a+c-b\right)}+\frac{1}{\left(a+c-b\right)\left(a+b-c\right)}+\frac{1}{\left(b+c-a\right)\left(a+b-c\right)}\right)\)

\(\Leftrightarrow\frac{1}{4r^2}=\frac{1}{c^2-\left(a-b\right)^2}+\frac{1}{a^2-\left(b-c\right)^2}+\frac{1}{b^2-\left(c-a\right)^2}\)

\(\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(áp dụng \(x^2-y^2\le x^2\)

\(\Rightarrow4r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le1\)

\(\Rightarrow\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có

\(S=\frac{a.ha}{2}=pr=\frac{r\left(a+b+c\right)}{2}\)

\(\Rightarrow ha=\frac{r\left(a+b+c\right)}{a}\)

\(\Rightarrow ha^2=\frac{r^2\left(a+b+c\right)^2}{a^2}\)

Tương tự

\(hb^2=\frac{r^2\left(a+b+c\right)^2}{b^2}\)

\(hc^2=\frac{r^2\left(a+b+c\right)^2}{c^2}\)

Cộng vế theo vế ta được

\(ha^2+hb^2+hc^2=r^2\left(a+b+c\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}=\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)

Bùi Thị Vân Quản lý 22/11/2016 lúc 14:27

Bài làm này thật xuất sắc !

Vu Thu Hang 08/04/2017 lúc 20:47

đúng vậy

alibaba nguyễn 13/03/2017 lúc 10:34

A B C E D a b c c (AD là phân giác trong góc A)

Qua B kẽ đường thẳng // AD và cắt AC tại E

\(\Rightarrow\hept{\begin{cases}\widehat{CAD}=\widehat{CEB}\\\widehat{DAB}=\widehat{ABE}\end{cases}}\)

\(\Rightarrow\widehat{CEB}=\widehat{ABE}\)

\(\Rightarrow\Delta ABE\)cân tại A

Xét \(\Delta ABE\) có \(BE< AB+AE=2AB=2c\)

Xét \(\Delta CBE\) có AD // BE 

\(\Rightarrow\frac{BE}{AD}=\frac{CE}{AC}\)

\(\Rightarrow BE=\frac{CE.AD}{AC}=\frac{l_a\left(b+c\right)}{b}< 2c\)

\(\Rightarrow\frac{1}{l_a}>\frac{b+c}{2bc}=\frac{1}{2b}+\frac{1}{2c}\left(1\right)\)

Chứng minh tương tự ta có:

\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2a}+\frac{1}{2c}\left(2\right)\\\frac{1}{l_c}>\frac{1}{2a}+\frac{1}{2b}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Lê Mạnh Tiến Đạt 13/03/2017 lúc 16:45

Bài khó quá !!

Nguyễn Thảo Vân 14/03/2017 lúc 22:09

cảm ơn nha

Masumi Sera 10/03/2017 lúc 23:12

Vì ON là pg của góc xOy =>xÔN = NÔY = 1/2 xÔy

    OM là pg của góc x'Oy =>yÔM =MÔx' = 1/2 yÔx'

mà xÔy + yÔx' =180`( kề bù )

=>xÔN + NÔy + yÔM + MÔx' = 180`

=>2NÔy + 2yÔM =180`

=> NÔy + yÔM =180`/2 =90`

=> MÔN =90`

Lê Trần Quỳnh Anh 09/03/2017 lúc 21:24

Trái đất có hình cầu bởi vì dạng hình cầu là trạng thái năng lực thấp nhất mà nhóm vật chất có thể kết hợp thành.Các thiên thạch nhỏ và các mặt trăng có thể sẽ không có dạng hình cầu nhưng sau khi chúng đạt được một kích cỡ nhất định thì tất cả các vật bị kéo lại với nhau nên tạo ra hình cầu

Mặt khác có một kích thước tối đa ......

bao than đen 09/03/2017 lúc 21:15

vì tự nhiên tạo hoá trái đất có hình cầu

Nguyễn Thị Thu Huyền 09/03/2017 lúc 21:21

vì trái đất là h c

Bùi Thế Hào 04/03/2017 lúc 11:52

3 3 3 a 3a-3

Gọi chiều rộng HCN ban đầu là a => Chiều dài là 3a.

Theo bài ra ta có (xem trên hình vẽ): 3(3a-3)-3.a=93 <=> 9a-9-3a=93 <=> 6a=102

=> a=17 (cm)

=> Chiều dài HCN là: 3.17=51 (cm)

Diện tích hình chữ nhật ban đầu là: 17.51=867 (cm2)

tth 24/02/2017 lúc 18:07

Phân số chỉ số học sinh khá và giỏi là:

1 - 1/3 = 2/3 (học sinh)

Phân số chỉ số học sinh khá là:

2/3 - 1/5 = 7/15 (học sinh)

Phân số chỉ số học sinh giỏi tăng lên là:

1/2 - 7/15 = 1/30 (học sinh)

Theo đề bài thì 1/30 học sinh bằng 8 em học sinh.

   (còn lại bạn tự làm) mình chỉ biết giải tới đây thôi! Phần tiếp theo mình giải còn lủng củng lắm! Mong bạn thông cảm!

k mình nha

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: