Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Giúp tôi giải toán và làm văn


Xyz CTV 8 tháng 7 lúc 9:17
Báo cáo sai phạm

a)Ta có A = x2 + 2x + 3 = (x2 + 2x  + 1) + 2 = (x + 1)2 + 2 \(\ge\)2

Dấu "=" xảy ra <=> x + 1 = 0 => x = -1

Vậy Min A = 2 <=> X = -1

b) Ta có B = x2 -4x + 5 = (x2 - 4x + 4) + 1 = (x - 2)2  + 1\(\ge\)1

Dấu "=" xảy ra <=> x - 2 = 0 => x = 2

Vậy Min B = 1 <=> x = 2

Đọc tiếp...
Kedofutori CTV 8 tháng 7 lúc 10:29
Báo cáo sai phạm

A = x2 + 2x + 3

    = x2 + 2x + 1 + 2

    = ( x + 1 )2 + 2 

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\forall x\)

Dấu = xảy ra <=> x + 1 = 0

                      <=> x = -1

Vậy AMin = 2 khi x = -1

B = x2 - 4x + 5

    = x2 - 4x + 4 + 1 

    = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\forall x\)

Dấu = xảy ra <=> x - 2 = 0

                      <=> x = 2

Vậy BMin = 1 khi x = 2 

Đọc tiếp...
dcv_new CTV 8 tháng 7 lúc 9:17
Báo cáo sai phạm

\(B=x^2-4x+5=\left(x^2-4x+2^2\right)+1=\left(x-2\right)^2+1\)

Ta thấy : \(\left(x-2\right)^2\ge0\)

Cộng cả 2 vế cho 2 ta được : \(\left(x-2\right)^2+2\ge2\)

Hay \(B\ge2\)

Vậy \(Min_B=2\)khi và chỉ khi \(x=2\)

Đọc tiếp...
Lê Thị Khánh Huyền 8 tháng 7 lúc 14:03
Báo cáo sai phạm

Aww cảm ơn cậu nhìuuuu

Đọc tiếp...
dcv_new CTV 8 tháng 7 lúc 13:59
Báo cáo sai phạm

\(\left(3-2x\right)\left(4x+8\right)\ge0\)

TH1 : \(\hept{\begin{cases}3-2x\ge0\\4x+8\ge0\end{cases}}\)

\(< =>\hept{\begin{cases}3\ge2x\\4x\ge-8\end{cases}< =>\hept{\begin{cases}\frac{3}{2}\ge x\\x\ge-\frac{8}{4}=-2\end{cases}}}\)

TH2 : \(\hept{\begin{cases}3-2x\le0\\4x+8\le0\end{cases}}\)

\(< =>\hept{\begin{cases}3\le2x\\4x\le-8\end{cases}}< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-2\end{cases}}\)

Vậy ...

Đọc tiếp...
dcv_new CTV 8 tháng 7 lúc 13:45
Báo cáo sai phạm

Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3

\(\left(2x-2\right)\left(2x+3\right)\le0\)

TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)

TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)

Vậy ...

Đọc tiếp...
✰ɮɾøкεŋ ɦεαɾէ✰ ( Dark ) CTV 7 tháng 7 lúc 9:27
Báo cáo sai phạm

a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)

\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)

\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)

Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)

\(x^2+14x+45-x^2-17x-30=x^2-25\)

\(-3x+15-x^2+25=0\)

\(-3x-x^2+40=0\)( giải delta ta đc )

\(x_1=-5;x_2=8\)

b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)

\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)

\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)

c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)

\(x^2+6x+9-10\ge x^2+5x+6-4\)

\(x-3\ge0\Leftrightarrow x\ge3\)

Đọc tiếp...
Vũ Hà My CTV 6 tháng 7 lúc 20:37
Báo cáo sai phạm

để chứng minh 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ ta sẽ chứng minh \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\) có ít nhất 1 số hữu tỉ

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{b}\end{cases}}}\)

do abc=1 => xyz=1 (1)

từ đề bài => \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow x+y+z=xy+yz+xz\left(xyz\ge1\right)\left(2\right)\)

Từ (1)(2) => \(xyz+\left(x+y+z\right)-\left(xy+yz+zx\right)-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

vậy \( {\displaystyle \displaystyle \sum }x=1 \) chẳng hạn, => \(a=b^3\)

\(\Rightarrow\sqrt[3]{a}=b\)mà b là số hữu tỉ

Vậy trong 3 số \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\)có ít nhất 1 số hữu tỉ (đpcm)

Đọc tiếp...
Nguyễn Ngọc Anh Minh 9 tháng 7 lúc 10:30
Báo cáo sai phạm

Trong lần lấy thứ 2 nếu chỉ lấy 1/3 số táo còn lại sau lần 1 thì số táo còn lại là

12+4=16 quả

Phân số chỉ 16 quả táo là

1-1/3=2/3 số táo còn lại sau lần 1

Số táo còn lại sau lần 1 là

16:2/3=24 quả

Trong lần lấy đầu tiên nếu chỉ lấy 1/2 số táo thì số táo còn lại là

24-5=19 quả

Số táo ban đầu có là

19:1/2=38 quả

Đọc tiếp...
zZz Cool Kid_new zZz CTV 8 tháng 7 lúc 21:05
Báo cáo sai phạm

:) trình bày các bước đi bạn :)) ai lại làm thế :v Bấm casio à :)

\(H=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(H^2=4+\sqrt{7}+4-\sqrt{7}+2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}\)

\(=8-2\sqrt{16-7}=8-6=2\)

\(\Rightarrow H=\sqrt{2}\Rightarrow\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-2=0\)

Vậy .....................

Đọc tiếp...
•๖ۣۜDɾεαмεɾ• ( Dark ) CTV 8 tháng 7 lúc 20:12
Báo cáo sai phạm

\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}=0\)

Đọc tiếp...
Kedofutori CTV 8 tháng 7 lúc 20:10
Báo cáo sai phạm

gọi \(A=\sqrt{3+\sqrt{3}}+\sqrt{3-\sqrt{3}}\)

\(< =>A^2=3+\sqrt{3}+3-\sqrt{3}+2\sqrt{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(< =>A^2=6+2\sqrt{9-3\sqrt{3}+3\sqrt{3}-\sqrt{3^2}}\)

\(< =>A^2=6+2\sqrt{6}\)

\(< =>A=\sqrt{6+2\sqrt{6}}\)

Đọc tiếp...
Ngoc Minh CTV 8 tháng 7 lúc 19:05
Báo cáo sai phạm

Sửa đề nha :

Đặt 

\(A=\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

\(A=\sqrt{1+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}}+\sqrt{1-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(A=\sqrt{1+\sqrt{4+2\sqrt{3}}}+\sqrt{1-\sqrt{4-2\sqrt{3}}}\)

\(A=\sqrt{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\sqrt{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(A^2=2+\sqrt{3}+2-\sqrt{3}+2\sqrt{2+\sqrt{3}+2-\sqrt{3}}\)

\(A^2=4+2\sqrt{4}=6\)

\(A=\sqrt{6}\)

Vậy ....

\(\)

Đọc tiếp...
Ngoc Minh CTV 8 tháng 7 lúc 19:09
Báo cáo sai phạm

Sửa từ dòng 6 :

\(A^2=2+\sqrt{3}+2-\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(A^2=4+2\sqrt{1}=6\)

\(A=6\)

Vậy ...

Đọc tiếp...
vịt. CTV 9 tháng 7 lúc 15:20
Báo cáo sai phạm

a) A = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

A = \(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

A = \(\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

A = \(-\frac{6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

A = \(-\frac{6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}\)

A = \(-\frac{6}{6\left(x-2\right)}\)

A = \(-\frac{1}{x-2}\)

b) |x| = \(\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) với x = 1/2, ta có: 

A = \(-\frac{1}{\frac{1}{2}-2}=\frac{2}{3}\)

+) với x = -1/2, ta có:

A = \(-\frac{1}{\left(-\frac{1}{2}\right)-2}=\frac{2}{5}\)

Đọc tiếp...
๖²⁴๖ۣۜƝƘ☆ʱ๖ۣۜKĭɾσɗ༉๖ۣۜDαɾƙ︵✰ 10 tháng 7 lúc 9:32
Báo cáo sai phạm

a, Đẻ \(P< 1\)thì : 

\(P=\left(\frac{x}{x+2}+\frac{x}{x-2}-\frac{2}{x^2-4}\right).\frac{x-2}{2x+2}< 1\)

\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}+\frac{x\left(x+2\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}-\frac{2\left(x+2\right)\left(x-2\right)}{\left(x^2+4\right)\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{2x+2}\)

\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)+x\left(x+2\right)\left(x^2-4\right)-2\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}\right).\frac{x-2}{2x+2}\)

\(=\left(\frac{2x^4-10x^2+8}{x^4-8x^2+16}\right).\frac{x-2}{2x+2}=\left(2x^4-10x^2+8\right)\left(2x+2\right)=\left(x-2\right)\left(x^4-8x^2+16\right)\)

PT tương đương vs : \(\left(2x^4-10x^2+8\right)\left(2x+2\right)-\left(x-2\right)\left(x^4-8x^2+16\right)< 1\)

Khi đó pt trở thành : \(3x^5+6x^4-12x^3-36x^2+48< 1\)

Chắc vại đó == 

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: