Giúp tôi giải toán


Siêu sao bóng đá 18 giờ trước (05:54)
Báo cáo sai phạm

1 quyển tập có số tiền là:

30000 : 12 = 2500 ( đồng )

5 quyển tập như thế có số tiền là:

2500 x 5 = 12500 ( đồng )

Tâm đưa cô bán hàng tờ giấy 50000 đồng thì cô bán hàng phải thối lại Tâm số tiền là:

50000 - 12500 = 37500 ( đồng )

Đ/S: 37500 đồng

Uyên Trần Hôm qua lúc 22:23
Báo cáo sai phạm

chắc là 37500 đồng (thối lại )

ken Gaming Hôm qua lúc 22:22
Báo cáo sai phạm

Giải dùm ken nha 

KODOSHINICHI Hôm qua lúc 21:16
Báo cáo sai phạm

đúng ko ?

Tìm một số biết số đó chia 8 dư 5,chia 12 dư 1,hai thương hơn kém nhau 13 đơn vị,Tính tổng của các số có 3 chữ số,các số đều chia 5 dư 3,Toán học Lớp 5,bài tập Toán học Lớp 5,giải bài tập Toán học Lớp 5,Toán học,Lớp 5

Songoku Sky Fc11 Hôm qua lúc 21:14
Báo cáo sai phạm

Đặt số cần tìm là A , ta thêm vào A 11 đơn vị thì được B . B chia hết cho 8 và thương tăng thêm 2 đơn vị. B cũng chia hết cho 12 và thương tăng thêm 1 đơn vị. Vậy hiệu của thương là 14.

Vậy 1/8 của B hơn 1/12 của B là 14 đơn vị .

Nên 4/12 của B là 14 x 8 = 112. Giá trị của B là 112 : 4/12 = 336

Vậy A là 336 - 11= 325


 
Nguyễn Xuân Toàn Hôm qua lúc 21:26
Báo cáo sai phạm

goi thương trong phép chia 1 số cho 12 là y

thì thương trong phép chia số đó cho 8 là y+13

theo bài ra, ta có: y x12+1=(y+13)x 8+5

yx12+1=yx8+104+5

yx12=yx8+108

yx(8+4)=yx8+108

yx8+yx4=yx8+108

yx4=108

y=108:4

y=27

vậy số cần tìm là:27x12+1=325

k cho mk nhaKODOSHINICHI

Cô nàng phép thuật 17/09 lúc 21:34
Báo cáo sai phạm

không câu được con nào !

Lê Đức Tùng 17/09 lúc 21:47
Báo cáo sai phạm

câu hỏi phi khoa học 

Nguyễn Ánh Dương 17/09 lúc 21:38
Báo cáo sai phạm

0 con

vì: 6 bỏ dấu móc đầu đi= 0

    9 bỏ móc đuôi đi cx =0

    8 chia đôi 1 nửa cx =0

An Nhiên 17/09 lúc 21:29
Báo cáo sai phạm

Ta có thể giải thích sự thành công của người bạn nhỏ như sau:
Ký hiệu hai người bạn chơi cờ giỏi là A và B. Trên bàn cờ với A người bạn nhỏ đi quân trắng thì bên bàn cờ với B cậu ta đi quân đen.
Khi A đi thế nào thì cậu ta đi đúng như thế trên bàn cờ với B, và đợi cho B đi, cậu ta lại đi đúng như B trên bàn cờ với A. Cuộc chơi cờ được lặp lại như vậy cho tới khi kết thúc.
Thực ra mọi diễn biến trên hai bàn cờ giống hệt nhau. Người bạn nhỏ chỉ làm khâu trung gian để A và B chơi với nhau.
Nếu A thắng thì cậu ta thắng B và ngược lại. Nếu hoà với một người thì cũng hoà với người kia.

người con gái đa tình 17/09 lúc 21:33
Báo cáo sai phạm

bt chết liền...

Vũ Thùy Linh 17/09 lúc 21:28
Báo cáo sai phạm

bạn nhỏ sẽ thắng

minh 17/09 lúc 21:00
Báo cáo sai phạm

tại vì nth học lớp 1 nên không biết giải

NTH 17/09 lúc 20:56
Báo cáo sai phạm

đây ko pải tán lớp 5

Gundam 17/09 lúc 20:56
Báo cáo sai phạm

hình đâu 3?

Le Nhat Phuong 14/09 lúc 21:26
Báo cáo sai phạm

Giả sử

Ta có hình vẽ như sau:

Goc-noi-tiep
AB di chuyển tới tiếp tuyến.

Dây AB có đầu mút A cố định, đầu mút B di động. AB có thể di chuyển tới tiếp tuyến của đường tròn O. Khi đó CABˆCAB^ là góc nội tiếp của đường tròn (O). Nếu dây AB di chuyển đến vị trí tiếp tuyến của đường tròn (O) tại tiếp điểm A thì liệu góc CAB có còn là góc nội tiếp nữa hay không? Một câu hỏi hay!
Dễ dàng nhận thấy góc CAB lúc này là góc tạo bởi tia tiếp tuyến và dây cung, và vẫn là một góc nội tiếp. Đó là trường hợp đặc biệt của góc nội tiếp khi một cát tuyến trở thành tiếp tuyến.

Phan Văn Hiếu 15/09 lúc 12:47
Báo cáo sai phạm

hoi bac google

Kudo Shinichi đẹp trai có 102 14/09 lúc 21:26
Báo cáo sai phạm

bn có in k z

Phạm Ánh Dương 14/09 lúc 21:37
Báo cáo sai phạm

Câu 1: Giải

Nếu thương là 6 và dư 16 thì SBC gấp 6 lần SC và hơn SC 16 đơn vị.Vậy ta có sơ đồ:

SBC: |------|------|------|------|------|------|--|   (phần thừa nhỏ ở ngoài là 16 đơn vị)

  SC: |------|

Số chia là:

     (142 - 16) : (6 + 1) x 1 = 18

Số bị chia là:

     142 - 18 = 124

Tự đáp số nha <3

Câu 2: Giải

Nếu thêm vào STN 18 đơn vị thì STN hơn STH:

       51 + 18 = 69

Ta có sơ đồ:

STN: |------|------|------|------|

STH: |------|

Số thứ hai là:

       69 : (4 -1) = 23

Số thứ nhất là:

       23 + 69 = 92

Tự đáp số nha :))

NHƠ CLICK CHO TỚ !!!!!

uzumaki naruto 14/09 lúc 21:32
Báo cáo sai phạm

1/ 

Gọi số bị chia là a; số chia là b, theo đề bài, ta có:

a:b = 6 dư 16 => (a-16) : b= 6  (1)

a+ b= 142 => a = 142 - b (2)

Thay (2) vào (1) => 

(142 - b - 16) : b = 6 

126 - b = 6b

6b + b = 126 

7b = 126 => b = 18

Thay b= 18 vào 2 => a = 142 - 18 => a = 124

Vậy SBC là 124 ; số chia là: 18

B2) 

Gọi số lớn là a; số bé là b, theo đề bài ta có:

a-b = 51 => a = 51 + b ( 1) 

a+18 = 4b (2)

Thay 1 vào 2, có: 

51+ b + 18 = 4b

69 = 4b - b 

69 = 3b

=> b =23

Thay b = 23 vào 1 => a = 51 + 23 => a = 74

Vậy hai số cân ftimf là: 

74 ; 23

Nguyễn Trần Thành An 14/09 lúc 21:31
Báo cáo sai phạm

Câu 1 : 

  Tổng của số bị chia và số chia là : 142 - 16 = 126

 Số chia là : \(\frac{126}{1+6}\)= 18

Số bị chia là : 18 .6 +16 =124

i love hattori 13/09/2017 lúc 19:09
Báo cáo sai phạm

= 2 

Cho em xin k các anh chị nha 

nguyen thi hue 14/09 lúc 10:54
Báo cáo sai phạm

2 nha bn

Trịnh Hoàng Hải Yến 13/09/2017 lúc 23:09
Báo cáo sai phạm

1 + 1 = 2

Tk mk di ma !

Doann Nguyen 17/09 lúc 14:28
Báo cáo sai phạm

Bằng 36 ,theo quy luật như sau:

1+5*1=6

2+6*2=14

3+7*3=24

Suy ra: 4+8*4=36

Thiên Thần Công Chúa 16/09 lúc 17:50
Báo cáo sai phạm

36 vì quy luật là tổng sau + tổng trước

leminhduc 13/09/2017 lúc 18:50
Báo cáo sai phạm

Ta có : 

1+5=6

2+6=14

3+7=24

=> ta có quy luật là : 1*5+1=6 ; 2*6+2=14 ; 3*7+3=24

=> 4*8+4=36

Nguyễn Thiều Công Thành 10/09/2017 lúc 22:05
Báo cáo sai phạm

mày bị ngu hok à

Ben 10 10/09/2017 lúc 20:40
Báo cáo sai phạm

CHUYÊN ĐỀ 4 - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN

A. MỤC TIÊU:

* Củng cố, khắc sâu kiến thức về các bài toán chia hết giữa các số, các đa thức

* HS tiếp tục thực hành thành thạo về các bài toán chứng minh chia hết, không chia hết, sốnguyên tố, số chính phương…

* Vận dụng thành thạo kỹ năng chứng minh về chia hết, không chia hết… vào các bài toán cụ thể

B.KIẾN THỨC VÀ CÁC BÀI TOÁN:

I. Dạng 1: Chứng minh quan hệ chia hết

1. Kiến thức:

* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó

* Chú ý:

+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k

+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m

+ Với mọi số nguyên a, b và số tự nhiên n thì:

 

2. Bài tập:

2.1. Các bài toán

Bài 1: chứng minh rằng

a) 251 - 1 chia hết cho 7                      b) 270 + 370 chia hết cho 13

c) 1719 + 1917 chi hết cho 18              d) 3663 - 1 chia hết cho 7 nhưng không chia hết cho 37

e) 24n  -1 chia hết cho 15 với nÎ N

Giải

a) 251 - 1 = (23)17 - 1  23 - 1 = 7

b) 270 + 370 (22)35 + (32)35 = 435 + 935  4 + 9 = 13

c) 1719 + 1917 =  (1719 + 1) + (1917 - 1)

1719 + 1  17 + 1 = 18 và 1917 - 1  19 - 1 = 18 nên  (1719 + 1) + (1917 - 1)

hay 1719 + 1917  18

d) 3663 - 1  36 - 1 = 35  7

     3663 - 1 = (3663 + 1) - 2  chi cho 37 dư - 2

e) 2 4n - 1 = (24) n - 1  24 - 1 = 15

Bài 2: chứng minh rằng

a)  n5 - n chia hết cho 30 với n Î N    ;   

b) n4 -10n+ 9 chia hết cho 384 với mọi n lẻ nΠ Z

c) 10n  +18n -28 chia hết cho 27 với nÎ N  ; 

Giải:

a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho 6 vì

(n - 1).n.(n+1) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 (*)

Mặt khác     n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - 4 + 5) = n(n2 - 1).(n2 - 4 ) + 5n(n2 - 1)

                = (n - 2)(n - 1)n(n + 1)(n  + 2) + 5n(n2 - 1)

Vì (n - 2)(n - 1)n(n + 1)(n  + 2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

     5n(n2 - 1) chia hết cho 5

Suy ra (n - 2)(n - 1)n(n + 1)(n  + 2) + 5n(n2 - 1) chia hết cho 5 (**)

Từ (*) và (**) suy ra đpcm

b) Đặt A = n4 -10n+ 9 = (n4 -n2 ) - (9n2 - 9) =  (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)

Vì n lẻ nên đặt n = 2k + 1 (k  Z) thì

A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2)  A chia hết cho 16 (1)

Và  (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)

Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384

c) 10 n  +18n -28 =  ( 10 n - 9n - 1) + (27n - 27)

+ Ta có: 27n - 27  27 (1)

+ 10 n - 9n - 1 = [( + 1) - 9n - 1] =   - 9n  = 9(  - n)  27 (2)

vì 9  9 và  - n  3 do  - n  là một số có tổng các chữ số chia hết cho 3

Từ (1) và (2) suy ra đpcm

3. Bài 3: Chứng minh rằng với mọi số nguyên a thì

a) a3 - a  chia hết cho 3

b) a7 - a  chia hết cho 7

Giải

a) a3 - a  = a(a2 - 1) =  (a - 1) a (a + 1)  là tích của ba số nguyên liên tiếp nên tồn tại một số là bội của 3 nên  (a - 1) a (a + 1) chia hết cho 3

b) ) a7 - a  = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 -  a + 1)

Nếu a = 7k (k  Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k Z)  thì a2 - 1 = 49k2 + 14k  chia hết cho 7

Nếu a = 7k + 2 (k Z)  thì a2 + a + 1 = 49k2 + 35k  + 7 chia hết cho 7

Nếu a = 7k + 3 (k Z)  thì a2 - a + 1 = 49k2 + 35k  + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a7 - a  chia hết cho 7

Bài 4: Chứng minh rằng  A = 13 + 23 + 33 + ...+ 1003 chia hết cho B = 1 + 2 + 3 + ... + 100

Giải

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) = 101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có:    A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Bài tập về nhà

Chứng minh rằng:

a) a5 – a chia hết cho 5

b) n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn

c) Cho a l à số nguyên tố lớn hơn 3. Cmr  a2 – 1 chia hết cho 24

d) Nếu a + b + c chia hết cho 6 thì a3 + b3 + c3 chia hết cho 6

e) 20092010  không chia hết cho 2010

f) n2 + 7n + 22  không chia hết cho 9

Dạng 2: Tìm số dư của một phép chia

Bài 1:

Tìm số dư khi chia 2100

a)cho 9,                     b) cho 25,               c) cho 125

Giải

a) Luỹ thừa của 2 sát với bội của 9 là 23 = 8 = 9 - 1

Ta có : 2100 = 2. (23)33 = 2.(9 - 1)33 = 2.[B(9) - 1] = B(9) - 2 = B(9) + 7

Vậy: 2100 chia cho 9 thì dư 7

b) Tương tự ta có:  2100 = (210)10 = 102410 =  [B(25) - 1]10  =  B(25) + 1

Vậy: 2100 chia chop 25 thì dư 1

c)Sử dụng công thức Niutơn:

2100 = (5 - 1)50 = (550  - 5. 549 + … + . 52 - 50 . 5 ) + 1

Không kể phần hệ số của khai triển Niutơn thì 48 số hạng đầu đã chứa thừa số 5 với số mũ lớn hơn hoặc bằng 3 nên đều chia hết cho 53  = 125, hai số hạng tiếp theo: . 52 -  50.5 cũng chia hết cho 125 , số hạng cuối cùng là 1

Vậy: 2100 = B(125) + 1 nên chia cho 125 thì dư 1

Bài 2:

Viết số 19951995 thành tổng của các số tự nhiên . Tổng các lập phương đó chia cho 6 thì dư bao nhiêu?

Giải

Đặt 19951995 = a = a1 + a2 + …+ an.  

Gọi  =  + a - a

           = (a1 3 - a1) + (a2 3 - a2) + …+ (an 3 - an) + a

Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

Bài 3: Tìm ba chữ số tận cùng của 2100 viết trong hệ thập phân

giải

Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000

Trước hết ta tìm số dư của phép chia 2100 cho 125

Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể  là 126, 376, 626 hoặc 876

Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8

trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8

Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376

Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376

Bài 4: Tìm số dư trong phép chia các số sau cho 7

a) 2222 + 5555                           b)31993

c) 19921993 + 19941995              d)

Giải

a) ta có: 2222 + 5555 = (21 + 1)22 + (56 – 1)55 = (BS 7 +1)22 + (BS 7 – 1)55

= BS 7 + 1 + BS 7 - 1 = BS 7 nên  2222 + 5555  chia 7 dư 0

b) Luỹ thừa của 3 sát với bội của 7 là 33 = BS 7 – 1

Ta thấy 1993 =  BS 6 + 1 = 6k + 1, do đó:

 31993 = 3 6k + 1 = 3.(33)2k = 3(BS 7 – 1)2k = 3(BS 7 + 1) = BS 7 + 3

c) Ta thấy 1995 chia hết cho 7, do đó:

 19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 =  BS 7 – 31993 + BS 7 – 1

Theo câu b ta có 31993 = BS 7 + 3 nên 

 19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3

d)  = 32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) =  BS 7 – 3 nên chia cho 7 thì dư 4

Bài tập về nhà  

 Tìm  số d ư khi:

a) 21994 cho 7

b) 31998 + 51998 cho 13

c) A =  13 + 23 + 33 + ...+ 993 chia cho B = 1 + 2 + 3 + ... + 99         

Dạng 3: Tìm điều kiện để xảy ra quan hệ chia hết

Bài 1: Tìm  n  Z để giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức B = n2 - n

Giải

Chia A cho B ta có: n3 + 2n2 - 3n + 2  = (n + 3)(n2 - n) + 2

Để A chia hết cho B thì 2 phải chia hết cho n2 - n = n(n - 1) do đó 2 chia hết cho n, ta có:

n

1

- 1

2

- 2

n - 1

0

- 2

1

- 3

n(n - 1)

0

2

2

6

loại

loại

Vậy: Để  giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức

B = n2 - n thì n

Bài 2:

a) Tìm n  N để n5 + 1 chia hết cho n3  + 1

b) Giải bài toán trên nếu n  Z

Giải

Ta có:  n5  + 1  n3 + 1  n2(n3 + 1) - (n2 - 1)  n3 + 1  (n + 1)(n - 1)  n3 + 1

  (n + 1)(n - 1)  (n + 1)(n2 - n + 1)  n - 1  n2 - n + 1  (Vì n + 1  0)

a) Nếu n = 1 thì  0 1

Nếu n > 1 thì n - 1 < n(n - 1) + 1 <  n2 - n + 1 nên không thể xẩy ra n - 1  n2 - n + 1 

Vậy giá trụ của n tìm được là n = 1

b) n - 1  n2 - n + 1  n(n - 1)  n2 - n + 1  (n2 - n + 1 ) - 1  n2 - n + 1

 1  n2 - n + 1. Có hai trường hợp xẩy ra:

+ n2 - n + 1 = 1  n(n - 1) = 0  (Tm đề bài)

+ n2 - n + 1 =  -1  n2 - n + 2 = 0 (Vô nghiệm)

Bài 3: Tìm số nguyên n sao cho:

a) n2 + 2n - 4  11                                       b) 2n3 + n2 + 7n + 1  2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1  n4 - 1                d) n3 - n2 + 2n + 7  n2 + 1

Giải

a) Tách n2 + 2n - 4  thành tổng hai hạng tử trong đó có một hạng tử là B(11)

n2 + 2n - 4  11  (n2 - 2n - 15) + 11  11 (n - 3)(n + 5) + 11  11

 (n - 3)(n + 5)   11

b) 2n3 + n2 + 7n + 1 = (n2 + n + 4) (2n - 1) + 5

Để  2n3 + n2 + 7n + 1  2n - 1 thì 5  2n - 1 hay 2n - 1 là Ư(5) 

Vậy:  n   thì 2n3 + n2 + 7n + 1  2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1  n4 - 1

Đặt A =  n4 - 2n3 + 2n2 - 2n + 1 = (n4 - n3) - (n3 - n2) + (n2 - n) - (n - 1)

= n3(n - 1) - n2(n - 1) + n(n - 1)  -  (n - 1) = (n - 1) (n3 - n2 + n - 1) = (n - 1)2(n2 + 1)

B = n4 - 1 = (n - 1)(n + 1)(n2 + 1)

A chia hết cho b nên n   1  A chia hết cho B  n - 1  n + 1  (n + 1) - 2  n + 1

  2  n + 1   

Vậy: n   thì  n4 - 2n3 + 2n2 - 2n + 1  n4 - 1 

d) Chia n3 - n2 + 2n + 7 cho n2 + 1 được thương là  n - 1, dư  n + 8

Để n3 - n2 + 2n + 7  n2 + 1 thì  n + 8  n2 + 1  (n + 8)(n - 8)  n2 + 1 65  n2 + 1

Lần lượt cho n2 + 1 bằng 1; 5; 13; 65 ta được n bằng 0; 2; 8

Thử lại ta có n = 0; n = 2; n = 8  (T/m)

Vậy: n3 - n2 + 2n + 7  n2 + 1 khi n = 0, n = 8

Bài tập về nhà:

Tìm số nguyên  n để:

a) n3 – 2 chia hết cho n – 2

b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1

c)5n – 2n chia hết cho 63

Dạng 4: Tồn tại hay không tồn tại sự chia hết

Bài 1: Tìm n  N sao cho 2n – 1 chia hết cho 7

Giải

Nếu n = 3k ( k  N) thì 2n – 1 = 23k – 1 = 8k  - 1 chia hết cho 7

Nếu n = 3k + 1 ( k  N) thì 2n – 1 = 23k + 1  – 1 = 2(23k – 1) + 1 = BS 7 + 1

Nếu n = 3k + 2 ( k  N) thì 2n – 1 = 23k + 2  – 1 = 4(23k – 1) + 3 = BS 7 + 3

V ậy: 2n – 1 chia hết cho 7 khi n = BS 3

Bài 2: Tìm n  N để:

a) 3n – 1 chia hết cho 8

b) A = 32n  + 3 + 24n + 1 chia hết cho 25

c) 5n – 2n chia hết cho 9

Giải

a) Khi n = 2k (k N) thì 3n – 1 = 32k – 1 = 9k – 1 chia hết cho 9 – 1 = 8

   Khi n = 2k + 1 (k N) thì 3n – 1 = 32k + 1  – 1 = 3. (9k – 1 ) + 2 = BS 8 + 2

Vậy : 3n – 1 chia hết cho 8 khi n = 2k (k N)

b) A = 32n  + 3 + 24n + 1 = 27 . 32n  + 2.24n =  (25 + 2) 32n  + 2.24n = 25. 32n  + 2.32n  + 2.24n

          = BS 25 + 2(9n  + 16n)

Nếu n = 2k +1(k N) thì 9n  + 16n = 92k + 1 + 162k + 1 chia hết cho 9 + 16 = 25

Nếu n = 2k  (k N) thì 9n có chữ số tận cùng bằng 1 , còn 16n có chữ số tận cùng bằng 6

suy ra 2((9n  + 16n) có chữ số tận cùng bằng 4 nên A không chia hết cho 5 nên không chia hết cho 25

c) Nếu n = 3k (k N) thì 5n – 2n =  53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9

    Nếu n = 3k + 1 thì 5n – 2n =  5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k

= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3

Tương tự:  nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9

ZyperTM 14/09 lúc 19:33
Báo cáo sai phạm

Chui vua thoi tao report bon may gio may co quyen gi chui nguoi ta !

tran trung hieu 10/09/2017 lúc 14:34
Báo cáo sai phạm

sory minh ghi nham

OoO_Nhok_Lạnh_Lùng_OoO 10/09/2017 lúc 14:43
Báo cáo sai phạm

5 xã có : 5 x 5 = 25 ( góc )

25 góc có : 25 x 5 = 125 ( nhà )

125 nhà có : 125 x 5 = 625 ( phòng )

625 phòng có : 625 x 5 = 3215 ( chồng )

3215 chồng có : 3215 x 5 = 15625 ( vợ )

15625 vợ có : 15625 x 5 = 78125 ( con )

=> Xã đó có : 3215 + 15625 + 78125 = 96965 ( người )

I am your faith 10/09/2017 lúc 15:09
Báo cáo sai phạm

Xã đó có 78125 người nhé

GV Quản lý 08/09/2017 lúc 09:44
Báo cáo sai phạm

   \(\left[\left(a\times6+21\right):3-5\right]:2-1\)

   \(=\left[\left(\frac{a\times6}{3}+\frac{21}{3}\right)-5\right]:2-1\)

  \(=\left[\left(2a+7\right)-5\right]:2-1\)

   \(=\left[2a+7-5\right]:2-1\)

   \(=\left[2a+2\right]:2-1\)

    \(=\left[a+1\right]-1\)

     \(=a\)

NGUYENHONGHUAN 27/08/2017 lúc 20:52
Báo cáo sai phạm

1.       Diện tích hình vuông ABCD là :                                                                                                                                                                                     561 x 561 = 314721 ( cm2)                                                                                                                                                             2.                

Lã Hoàng Hải Linh 30/08/2017 lúc 20:14
Báo cáo sai phạm

Số đó là :

  1 + 1 = 2

      Đáp số : 2

hoàng thị thanh huyền 25/08/2017 lúc 22:15
Báo cáo sai phạm

Kết quả là 

1       + 1=2

     Đáp số...........

Nguyen Trieu Anh Linh 25/08/2017 lúc 20:43
Báo cáo sai phạm

2 nha bn

Ben 10 23/08/2017 lúc 21:55
Báo cáo sai phạm

Góc giữa tiếp tuyến và một dây cung

Dạng 1: Sử dụng tính chất góc giữa tiếp tuyến và dây cung để giải một số bài toán cơ bản

Dạng 1.1: Sử dụng số đo góc bằng nhau để chứng minh

1.Cho tam giác ABC có đường tròn ngoại tiếp (O). Vẽ đường tròn (O’) tiếp xúc trong với (O) tại A và tiếp xúc với cạnh BC, CA, AB tại D, E, F. Cmr:

a) EF song song với BC.

b) AD là phân giác trong góc .

2. Cho hai đường tròn (O;R) và (O’;R’) tiếp xúc trong với nhau tại A (R > R’). Qua A kẻ đường thẳng  cố định cắt (O’), (O) tại B, C tương ứng (khác A). Một đường thẳng thay đổi cắt (O’), (O) tại D, E tương ứng (khác A) ().

a) Cmr: BD//CE.

b) Biết AB = 2, AC = 3. Tìm GTNN của biểu thức .

3. Cho đường tròn (O) và một dây cung MN. Trên tiếp tuyến với (O) tại M, ta lấy điểm T sao cho MT = MN. Tia TN cắt (O) tại điểm thứ hai S. CMR: a) SM = ST.

b) .

4. Từ một điểm A ở ngoài đường tròn (O) ta kẻ tiếp tuyến AB tới (O) (B là tiếp điểm) và cát tuyến ADC không đi qua O (D nằm giữa A và C). Phân giác trong  cắt DC tại E. Cmr: AB = AE.

5. Cho hình vuông ABCD. Vẽ cung tròn AC thuộc đường tròn tâm D bán kính DA và trên đó lấy điểm P. Gọi K là giao điểm của DP với nửa đường tròn đường kính AD (nằm ở trong hình vuông), gọi I là hình chiếu vuông góc của P lên AB. Cmr: PK = PI.

6. Cho đường tròn (O; R) và hai đường kính AB, CD vuông góc với nhau. Trên tia đối của tia CO lấy điểm S. Đường thẳng SA cắt đường tròn tại điểm thứ hai M. Tiếp tuyến với (O;R) tại M cắt CD tại P, BM cắt CD tại T.

a) Cmr: .

b) Biết . Hãy tính  theo .

7. Cho hai đường tròn (O) và (O') ở ngoài nhau. Đường thẳng OO' cắt (O) và (O') tương ứng và theo thứ tự tại A, B, C, D. Kẻ tiếp tuyến chung ngoài EFcủa hai đường tròn (E thuộc (O), F thuộc (O')). Gọi M, N là giao điểm của cặp đường thẳng AE,DF và EB,FC tương ứng. CMR:

a) MENF là một hình chữ nhật.

b) MN vuông góc với AD.

c) .

8. Từ một điểm C ở ngoài đường tròn (O) ta kẻ hai tiếp tuyến CA, CB tới (O) ( A, B là tiếp điểm). Vẽ đường tròn (O’) đi qua C và tiếp xúc với AB tại B. (O’) cắt (O) tại điểm M (khác B). Cmr: AM đi qua trung điểm của BC (HD: Kéo dài AM cắt (O’) tại D, ta có ABDC là một hình bình hành)

9. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng. Đường thẳng AB cắt đường tròn ngoại tiếp tam giác BCD tại E ( khác B). Cmr: ACED là một hình bình hành.

10. Cho hai đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A. Một tiếp tuyến của (O) tại B cắt (O’) tại hai điểm phân biệt C, D (C nằm giữa B và D). Các tia CA, DA cắt (O) tai E, F tương ứng.

a) Cmr: EF//CD.

b) Gọi M là điểm chính giữa cung CD không chứa A. Tính số đo .

11. Cho đường tròn (O) và một dây cung AB cố định không là đường kính. Xét điểm C di chuyển trên cung lớn AB (C khác A, B). Gọi M, N lần lượt là hình chiếu vuông góc của C lên hai tiếp tuyến với (O) tại A, B tương ứng, H là hình chiếu vuông góc của C lên AB.

a) Cmr: .

b) Tìm điều kiện để

12. Cho đường tròn (O) và một dây cung AB cố định không là đường kính. Xét điểm C di chuyển trên cung nhỏ AB (C khác A, B). Gọi M, N lần lượt là hình chiếu vuông góc của C lên hai tiếp tuyến với (O) tại A, B tương ứng, H là hình chiếu vuông góc của C lên AB. Tìm vị trí của C để biểu thức nhỏ nhất.

13. Cho tam giác ABC vuông tại A có đường tròn ngoại tiếp (O) bán kính 10. Phân giác trong góc B cắt AC và tiếp tuyến tại C của (O) tại D, E tương ứng. Biết BD = 8.

a) Cmr: tam giác CDE cân tại C.

b) Tính độ dài BE.

14*. Cho đường tròn (O) và hai đường tròn nhỏ hơn  nằm trong (O) tiếp xúc trong với (O) tại M, N tương ứng,   cắt nhau tai hai điểm A, B và . Hai tia MA, MB  cắt lại  tương ứng tại  C, D. Cmr: CD tiếp xúc với . (HD: Một tiếp tuyến chung của đi qua C và tiếp xúc với  tại X . Cm:   dựa vào bài 1)

15*.

Dạng 1.2: Sử dụng tính chất:

Bài toán cơ bản:  Cho đường tròn (O: R) và điểm M ở ngoài (O). Từ M kẻ tiếp tuyến MT và cát tuyến MAB tới (O). Khi đó .

1. Cho tam giác ABC có đường tròn ngoại tiếp (O). Tiếp tuyến với (O) tại A cắt BC tại D. Cmr: . (HD: )

2. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng. Gọi M là giao điểm của đường thẳng AB và đường thẳng CD. Cmr: M là trung điểm của CD.

3. Cho góc xAy và đường tròn (O) tiếp xúc với hai tia Ax, Ay tại B, C tương ứng. Từ C kẻ đường thẳng (d) song song với Ax cắt (O) tại điểm thứ hai D; AD cắt (O) tại điểm thứ hai M, CM cắt AB tại N. CMR:

a) .

b) AN=BN.

4. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B. Từ một điểm M thay đổi trên (O) (M ở ngoài (O’)) kẻ tiếp tuyến MC tới (O’) (C thuộc (O’)). Cmr:  là không đổi.

5. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng (B gần đường thẳng CD hơn A). Từ A kẻ đường thẳng song song với CD cắt (O), (O’) tại các điểm thứ hai M, N tương ứng, hai đường thẳng MC, ND cắt nhau tại E. Hai đường thẳng BC, BD cắt MN tại P, Q tương ứng. Cmr:

a) A và E đối xứng nhau qua CD.

b) Tam giác EPQ cân tại E. (HD: Sử dụng kết quả bài 2 và bổ đề hình thang)

6. Cho hai đường tròn (O) và (O’) nằm ngoài nhau và một tiếp tuyến chung ngoài tiếp xúc với (O) và (O’) tại A, B tương ứng. Gọi C là điểm đối xứng B qua OO’. đường thẳng AC cắt (O) và (O’) tại các điểm thứ hai D, E tương ứng. Cmr:. (HD: Kẻ tiếp tuyến chung ngoài CF)  

7. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B. Tiếp tuyến với (O’) tại B cắt (O) tại điểm thứ hai C. Gọi I là trung điểm BC, đường thẳng AI cắt các đường tròn (O), (O’) tại các điểm thứ hai tương ứng D, E. Cmr: BDCE là một hình bình hành.

8. Cho tam giác ABC nhọn và (O) là đường tròn đường kính BC. Từ A kẻ hai tiếp tuyến AM, AN tới (O) (M, N thuộc (O)). Gọi D là hình chiếu vuông góc của A lên BC, E là giao điểm của MN và AD.

a) Cmr: E là trực tâm tam giác ABC. (HD: Gọi F là giao điểm thứ hai của AB và (O). Cm: )

b) Cmr: DA là phân giác trong góc .

9. Cho ba điểm A, B, C thẳng hàng theo thứ tự đó. Một đường tròn (O) thay đổi luôn đi qua B, C. Từ A kẻ hai tiếp tuyến AD, AE với (O) (D, E thuộc (O)).

a) Cmr: D chạy trên một đường tròn cố định.

b) Cmr: đường thẳng DE luôn đi qua một điểm cố định.

c) Gọi MN là một đường kính của (O) vuông góc với BC, đường thẳng AM cắt (O) tại điểm thứ hai K. Cmr: AB, DE, KN đồng quy.

Dạng 2: Sử dụng tính chất góc giữa tiếp tuyến và dây cung để chứng minh một đường thẳng tiếp xúc với một đường tròn

Bài toán cơ bản 1: Cho tam giác ABC nội tiếp đường tròn (O). Kẻ tia Ax khác phía với AB đối với đường thẳng AC. CMR:  = khi và chỉ khi Ax tiếp xúc với (O).

Bài toán cơ bản 2: Cho tam giác ABC có đường tròn ngoại tiếp (O). Trên tia đối của tia CB lấy điểm D. CMR: AD tiếp xúc với (O) khi và chỉ khi .

Bài tập áp dụng

1. Cho tam giác ABC cân tại A. Đường trung trực của AB cắt tia đối của tia CB tại D. CMR: AB tiếp xúc với (ACD).

2. Cho hình thang ABCD với hai đáy AB,CD. CMR: BC tiếp xúc với đường tròn (ABD) khi và chỉ khi .

3. Cho tứ giác lồi ABCD có hai đường chéo cắt nhau tại O.

CMR: Đường tròn ngoại tiếp tam giác OCD tiếp xúc đường tròn ngoại tiếp tam giác OAB khi và chỉ khi ABCD.

4. Cho hình bình hành ABCD, . Đường tròn ngoại tiếp tam giác BCD cắt AC ở E. CMR: BD tiếp xúc với đường tròn (AEB).

5. Cho đường tròn (O). Từ một điểm M ở ngoài (O) ta kẻ hai cát tuyến MAB, MCD (theo thứ tự đó); kẻ dây CE song song với AB

a) CMR: =

b) CMR: AD.MB= MD.AE

c) CMR: EA tiếp xúc với đường tròn (MAD)

d) Cho AB= EC. CMR: nếu gọi I là giao điểm của EC và BD thì hai đường tròn (MAD)và (IED) tiếp xúc nhau tại D.

6. Cho tam giác ABC có phân giác trong AD. Xét đường tròn (O) đi qua A và tiếp xúc với BC tại D. Giả sử (O) cắt các cạnh AB, AC lần lượt tại E, F (E, F không trùng với A). CMR:

a)  EF // BC.

b).

c) DF tiếp xúc với (ABD).

7. Cho tam giác ABC nhọn có đường cao AH. Gọi M, N tương ứng là trung điểm AB, AC.

a) MN tiếp xúc với hai đường tròn (HBM) và (HCN).

b) CMR: Các đường tròn (HBM), (HCN), (AMN) cùng đi qua một điểm K.

c) Đường thẳng HK đi qua trung điểm của MN.

8. Cho nửa đường tròn (O) đường kính BC và một điểm A trên nửa đường tròn (A khác B, C). Gọi H là hình chiếu của A lên BC. Trên nửa mặt phẳng bờ BC chứa A, dựng hai nửa đường tròn đường kính HB, HC, chúng lần lượt cắt AB, AC tại E, F (E khác B, F khác C).

a) CMR: AE.AB=AF.AC.

b) CMR: EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB, HC.

c) Gọi I, K tương ứng là các điểm đối xứng với H qua AB, AC. CMR: I, A, K thẳng hàng và AK tiếp xúc với (O).

d) Gọi M là giao điểm của đường thẳng IK và tiếp tuyến của (O) tại B. CMR: MC, AH, EF đồng quy.

9. Cho đường tròn (O) và hai điểm A, B cố định trên đó sao cho AB không là đường kính. Gọi M là điểm chính giữa cung nhỏ AB. Trên đoạn AB lấy hai điểm phân biệt C, D sao cho C ở giữa A, D và C, D khác A, B. Các tia MC, MD cắt (O) tại E, F tương ứng(E, F khác M). CMR

a) CEFD là một tứ giác nội tiếp.

b) MA tiếp xúc với đường tròn (ACE).

c) Nếu gọi  lần lượt là tâm các đườn tròn (ACE), (BDF) thì khi C, D thay đổi, thỏa mãn điều kiện đã cho, thì hai đường thẳng  luôn cắt nhau tại một điểm cố định.

10. Cho tam giác ABC vuông cân tại A có đường tròn ngoại tiếp (O). Xét điểm M thay đổi trên cung nhỏ AC (M khác A, C). Gọi D là giao điểm của hai đường thẳng AM và BC.

a) CMR: AM.AD không đổi.

b) Giả sử 2.AM = BC. Tính số đo các góc .

c) Tìm M để (2.AM + AD) nhỏ nhất.

d) CMR: Đường tròn (MCD) luôn tiếp xúc với một đường thẳng cố định.

e) CMR: Tâm I của đường tròn (MCD) luôn chạy trên một đường thẳng cố định.

11. Cho tam giác ABC cân tại A. Gọi (I) là đường tròn tiếp xúc với AB tại B và tiếp xúc với AC tại C. Gọi D là trung điểm AB. Tia CD cắt (I) tại E và (ABE) tại K (K khác E). CMR

a)  AK//BC, BK//AC.

b) BC tiếp xúc với (ABE).

12. Cho hai đường tròn (O), (O’) cắt nhau ở A và B. Kẻ tiếp tuyến chung CC’(C thuộc (O), C’ thuộc (O’), A gần CC’ hơn B ) và kẻ đường kính CD của (O). Gọi E, F theo thứ tự là giao điểm của OO’ với C’D và CC’.

a) CMR: .

b) CMR: FA tiếp xúc với đường tròn (CAC’).

13. Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B. Kẻ tiếp tuyến chung ngoài EF của hai đường tròn (E thuộc (O), F thuộc (O') và E,A,F nằm cùng một phía đối với đường thẳng OO') cắt OO' tại I. CMR: AI tiếp xúc với đường tròn ngoại tiếp tam giác AEF.

Lê Anh Tú 23/08/2017 lúc 21:57
Báo cáo sai phạm

copy trên mạng ko!

Tran Ngoc Diep 23/08/2017 lúc 21:56
Báo cáo sai phạm

bạn biết rồi lại còn hỏi làm gì?

Ngô Huyền Anh 23/08/2017 lúc 22:03
Báo cáo sai phạm

mk vô trang của bn thì thấy bn ghi là xl m.n mk sẽ ko tưj hỏi , tưj tl nữa . bn nói mà ko làm đc thì lúc đầu đừng có nói 

Mạnh Khôi 23/08/2017 lúc 21:54
Báo cáo sai phạm

Tên này chắc chắn hack

Lê Anh Tú 23/08/2017 lúc 21:51
Báo cáo sai phạm

copy trên mạng thì đửng có đăng !

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: