Giúp tôi giải toán và làm văn


The Hell ? What 27/10/2016 lúc 22:35
Báo cáo sai phạm

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Đọc tiếp...
tôi học giỏi toán 02/07/2015 lúc 10:38
Báo cáo sai phạm

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

Đọc tiếp...
Sơn Tùng MTP 04/07/2017 lúc 23:38
Báo cáo sai phạm

Bài tập về nhà mà thấy khó có thể hỏi thầy Khánh, dạy ở lớp 9A0 trung tam luyện thi khoa bảng

Đọc tiếp...
Forever_Alone 14/11/2017 lúc 12:15
Báo cáo sai phạm

Ta có \(\sqrt{7}< \sqrt{9}=3\)

\(\sqrt{11}< \sqrt{16}=4\)

\(\sqrt{32}< \sqrt{36}=6\)

\(\sqrt{40}< \sqrt{49}=7\)

Cộng vế theo vế của bất đẳng thức ta được 

\(\sqrt{7}+\sqrt{11}+\sqrt{32}+\sqrt{40}< \sqrt{9}+\sqrt{16}+\sqrt{36}+\sqrt{49}=2+4+6+7=19\)

Vậy ....

cách làm thì như vậy nhưng tui nghĩ mãi ko ra , đề sai chăng  

Đọc tiếp...
minhtai 14/11/2017 lúc 12:44
Báo cáo sai phạm

cách này ko dược rồi 

Đọc tiếp...
minhtai 14/11/2017 lúc 12:04
Báo cáo sai phạm

CHO MÌNH LỜI GIẢI CỤ THỂ , RÕ RÀNG

Đọc tiếp...
Lê Nhật Khôi 08/11/2017 lúc 19:56
Báo cáo sai phạm

Nếu \(\sqrt{2}\)là số hữu tỉ thì

Ta có\(\sqrt{2}=\frac{a}{b}\)

\(\Rightarrow2=\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)

Suy ra được \(a^2=2b^2\)

Đặt \(a=2k\)

Suy ra \(\left(2k\right)^2=2b^2=2k^2\)

Suy ra b là số chẵn

Suy ra a,b ko phải là 2 số nguyên tố cùng nhau 

Suy ra Giả sử sai

Vậy \(\frac{a}{b}\)là số vô tỉ

Đọc tiếp...
ST CTV 08/11/2017 lúc 19:50
Báo cáo sai phạm

Giả sử \(\sqrt{2}\) là số hữu tỉ

\(\Rightarrow\sqrt{2}=\frac{a}{b}\left(a,b\in Q;b\ne0;\left(a,b\right)=1\right)\)

\(\Rightarrow2=\frac{a^2}{b^2}\Rightarrow a^2=2b^2\)

Vì \(\frac{a}{b}\)là số hữu tỉ \(\Rightarrow a^2⋮2\Rightarrow a⋮2\left(1\right)\)

=> a = 2k (k thuộc Q) => a2 = 4k2

Ta có: a2 = 2b2 => 4k2 = 2b2 => 2k2 = b2 => \(b^2⋮2\Rightarrow b⋮2\) (2)

Từ (1) và (2) => (a,b) khác 1 => trái với giả sử

Vậy...

Đọc tiếp...
Nhóc_Siêu Phàm 05/12/2017 lúc 20:49
Báo cáo sai phạm

Chứng minh phản chứng : 
Giả sử √2 là số hữu tỉ 
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1) 
√2 = a/b 
<=> 2 = a²/b² 
<=> b² = a²/2 
=> a² chia hết cho 2 
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2) 
=> a = 2k. Thay vào : 
2 = a²/b² 
<=> 2 = (2k)²/b² 
<=> b² = 2k² 
=> b² chia hết cho 2 
=> b chia hết cho 2 (3) 
Từ (2) và (3) => ƯC (a ; b) = 2 
=> Mâu thuẫn (1) 
=> Điều giả sử là sai 
=> √2 là số vô tỉ (đpcm)

Đọc tiếp...
Nguyễn Nhật Minh 07/11/2017 lúc 19:33
Báo cáo sai phạm

a) Ta có:

\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)

b) Ta có:

\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

Đọc tiếp...
nguyen tuan anh 05/11/2014 lúc 20:54
Báo cáo sai phạm

a)  b   la so  vo ti   

b)    b la so vo ti

CHƯNG MINH DAI LAM CHẲNG VIẾT ĐÂU (MỎI TAY)

Đọc tiếp...
Nguyễn Trung Hiếu 05/11/2017 lúc 19:22
Báo cáo sai phạm

bạn kia làm đúng rồi

k tui nha

thank

Đọc tiếp...
Kaito Kid 05/11/2017 lúc 19:20
Báo cáo sai phạm

ban kia lam dung roi do 

k tui nha

thanks

Đọc tiếp...
KUDO SHINICHI 07/09/2016 lúc 15:03
Báo cáo sai phạm
  1. Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
  2. Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
  3. Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
  4. Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
  5. Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
  6. Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
  7. Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.
  8. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
  9. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

tích mik nha

Đọc tiếp...
KUDO SHINICHI 07/09/2016 lúc 15:01
Báo cáo sai phạm
  1. Giả sử rằng  là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho a /b = .
  2. Như vậy  có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): a / b với a, b là hai số nguyên tố cùng nhau và (a / b)2 = 2.
  3. Từ (2) suy ra a2 / b2 = 2 và a2 = 2 b2.
  4. Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
  5. Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
  6. Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
  7. Thay (6) vào (3) ta có: (2k)2 = 2b2  4k2 = 2b2  2k2 = b2.
  8. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
  9. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết a / b là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận  là một số hữu tỉ là sai và phải kết luận  là số vô tỉ.

Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."

Đọc tiếp...
Nhóc_Siêu Phàm 05/12/2017 lúc 20:46
Báo cáo sai phạm

giả sử √5 là số hữu tỉ 
=> √5 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 5 = a²/b² 
<=> a² = 5b² 
=> a² ⋮ 5 
5 nguyên tố 
=> a ⋮ 5 
=> a² ⋮ 25 
=> 5b² ⋮ 25 
=> b² ⋮ 5 
=> b ⋮ 5 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √5 là số vô tỉ

Đọc tiếp...
Phước Nguyễn 27/07/2016 lúc 12:56
Báo cáo sai phạm

Do  \(n\in N^{\text{*}}\)  \(\left(o\right)\) nên ta dễ dàng suy ra  \(2+2\sqrt{28n^2+1}\in Z^+\)

Do đó,  \(2\sqrt{28n^2+1}\in Z^+\)  dẫn đến  \(\sqrt{28n^2+1}\in Q\)  

Lại có:  \(28n^2+1\)  luôn là một số nguyên dương (do  \(\left(o\right)\))   nên   \(\sqrt{28n^2+1}\in Z^+\)

hay nói cách khác, ta đặt  \(\sqrt{28n^2+1}=m\)  (với  \(m\in Z^+\)  )

\(\Rightarrow\)  \(28n^2+1=m^2\)   \(\left(\alpha\right)\)

\(\Rightarrow\)    \(m^2-1=28n^2\)  chia hết cho  \(4\)

Suy ra  \(m^2\text{ ≡ }1\)    \(\left(\text{mod 4}\right)\)  

Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\)  \(\left(k\in Z^+\right)\)

Từ  \(\left(\alpha\right)\)  suy ra  \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)

nên  \(7n^2=k\left(k+1\right)\)

Theo đó,  ta có:  \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)  

Xét hai trường hợp sau:

\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)

Suy ra   \(7n^2=7q\left(7q+1\right)\)

\(\Rightarrow\)  \(n^2=q\left(7q+1\right)\)  \(\left(\beta\right)\)

Mặt khác, vì  \(\left(q,7q+1\right)=1\)  nên  từ  \(\left(\beta\right)\)  suy ra  \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\)  \(7a^2+1=b^2\)  \(\left(\gamma\right)\)

Tóm tại tất cả điều trên, ta có:

\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)

Khi đó,  \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\)  (do  \(\left(\gamma\right)\)  )

Vậy,  \(A\)  là số chính phương với tất cả các điều kiện nêu trên

\(\text{Trường hợp 2:}\)\(k+1=7q\)

Tương tự

Đọc tiếp...
White Boy 27/07/2016 lúc 15:48
Báo cáo sai phạm

th2 có thỏa mãn k bn?

Đọc tiếp...
nguyễn tiến hanh 30/03/2017 lúc 10:36
Báo cáo sai phạm

bạn phía trên làm đúng dó 

Đọc tiếp...
Đinh Chí Công 25/10/2017 lúc 18:42
Báo cáo sai phạm

ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b = 2 thì
(1) => a = c/2 <=> c = 2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a = 3 hoặc a = -3
_ với a = 3 thì c= 2 . 3 = 6 (thỏa)
_với a = -3 thì c = 2 . -3  = -6 ( thỏa )
(*) Với b = -2  thì
(1) => a = c / -2 <=> c = -2a
ta có: ac = 9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a = 3 thì c = -2 . 3 = -6 ( thỏa )
_với a = -3 thì c = -2 . -3 = 6 ( thỏa )
Vậy S = { ( 3 ; 2 ; 6 ) ; ( -3 ; 2 ; -6 ) ; ( 3 ; -2 ; -6 ) ; ( -3 ; -2 ; 6 ) }

Nhưng đầu bài thỏa mãn là không phải số âm nên :

Từ đó suy ra các số a,b,c bằng :

a = 3 ; b = 2 ; c = 6

Đọc tiếp...
DUONG VU BAO NgOC 25/10/2017 lúc 19:26
Báo cáo sai phạm

thank you 

Đọc tiếp...
thang Tran 18/06/2015 lúc 07:21
Báo cáo sai phạm

G/s \(\sqrt{3}+\sqrt{2}\) Là số hữu tỉ .

Đặt \(\sqrt{2}+\sqrt{3}=a\) =>\(2+3+2\sqrt{6}=a^2\Leftrightarrow2\sqrt{6}=a^2-5\Rightarrow\sqrt{6}=\frac{a^2-5}{2}\)

Vì a là số huuwx tỉ nên \(\frac{a^2-5}{2}\) là số hữu tỉ => \(\sqrt{6}\) cũng là số hữu tỉ

\(\sqrt{6}\) là số hữu tỉ => \(\sqrt{6}\) viết dưới dạng p/s tối giản a/b (UCLN(a,b) = 1)

=> \(\sqrt{6}=\frac{a}{b}\)  => \(6=\frac{a^2}{b^2}\Rightarrow6b^2=a^2\Leftrightarrow a^2\) chia hết cho 6 => a chia hết cho 6]

Đặt a = 6t ta có 36t^2 =6b^2 => b^2=6t^2 => b chia hét cho 6 

Vậy a, b có Mottj UC là 6 trái với G/s UCLN (a,b) = 1 

VẬy căn 6 là số vô tỉ => ĐPCM

Đọc tiếp...
Lê Quang Phúc 18/06/2015 lúc 06:52
Báo cáo sai phạm

quá khó .                            

Đọc tiếp...
Nguyễn Đình Dũng 17/06/2015 lúc 22:56
Báo cáo sai phạm

chịu     

Đọc tiếp...
NGUYỄN MINH ÁNH 23/10/2017 lúc 20:08
Báo cáo sai phạm

Gỉa sử tồn tại số hữu tỉ x mà x2 = 5. Như vậy x = \(\sqrt{5}\)là số hữu tỉ. Do đó viết dc dưới dạng phân số tối giản \(\frac{a}{b}\). Ta có : \(\sqrt{5}\)\(\frac{a}{b}\), => 5 = \(\frac{a^2}{b^2}\)hay 5b2 = a2 (1) . Chứng tỏ a2\(⋮\)5 mà 5 là số ng tố nên a \(⋮\)5.

Đặt a = 5k ( k \(\in\)Z ) ta có : a2 = 25k2   (2)

Từ (1) và (2) => 5b2 = 25k2 nên b2 = 5k2  (3)

Từ (3) ta lại có b2 \(⋮\)5 và vì 5 là số ng tố nên b \(⋮\)

Ta có a và b \(⋮\)5 nên p/s \(\frac{a}{b}\)k tối giản, trái vs điều giả sử ban đầu 

Vậy \(\sqrt{5}\)k phải là số hữu tỉ, nghĩa là k có số hữu tỉ nào mà x2 = 5

Đọc tiếp...
Đinh Viết Hoàng 23/10/2017 lúc 17:52
Báo cáo sai phạm

2,236067977

Đọc tiếp...
Trần Đức Thắng 06/09/2015 lúc 23:10
Báo cáo sai phạm

Chưa chắc đã đúng

VD : \(\sqrt{2}\)  là số vô tỉ

\(\sqrt{2}.\sqrt{2}=2\) là số tự nhiên

Đọc tiếp...
Ngọc Vĩ 06/09/2015 lúc 23:11
Báo cáo sai phạm

ukm Trần Đức Thắng giải đúng ùi 

Đọc tiếp...
OnIine Math 15/10/2017 lúc 13:02
Báo cáo sai phạm

số vô tỷ là số thập phân vô hạn không tuần hoàn.

ví dụ: căn 2, căn 3
k cho mk nha mk trả lời đầu tiên.

Đọc tiếp...
Hatsune Miku 06/06/2015 lúc 20:11
Báo cáo sai phạm

Bài giải:

 $\sqrt{a}$Giả sửa là số hữu tỉ,Ta có:

$\sqrt{a}=\frac{m}{n};m,n\in N;n\ne0$a=mn ;m,nN;n0  UCLN(m,n)=1

$\Rightarrow a=\frac{m^2}{n^2}\Rightarrow n^2.a=m^2$a=m2n2 n2.a=m2

Vì A không phải số chính phương  nên suy ra$\Rightarrow\frac{m}{n}\notin N$
mn N
 va $n>1$n>1.Gọi P là số nguyên tố của:

 $n\Rightarrow m^2:p\Rightarrow m:p.$nm2:pm:p.

Vậy P là số nguyên của cả m và n.Trái với giả thiết UCLN(m,n)=1

 

​                                        Vậy :$\sqrt{a}$a là số vô tỉ

Chúc bạn học tốt^_^

Đọc tiếp...
thien ty tfboys 06/06/2015 lúc 20:04
Báo cáo sai phạm

Gia sư \(\sqrt{a}\) la so huu ti ,nghia la 

\(\sqrt{a}=\frac{m}{n};m,n\in N;n\ne0\) va UCLN(m,n)=1

\(\Rightarrow a=\frac{m^2}{n^2}\Rightarrow n^2.a=m^2\)

Vì a không phải là số chính phương \(\Rightarrow\frac{m}{n}\notin N\) va \(n>1\) goi p la so nguyen to cua \(n\Rightarrow m^2:p\Rightarrow m:p.\)

Vay p la so nguyen to cua ca m va n .Trái với giả thiết là UCLN(m,n)=1

​                                        Vậy :\(\sqrt{a}\) la so vo ti

Đọc tiếp...
Linh Vũ 28/09/2017 lúc 21:35
Báo cáo sai phạm

đk x>=0

<=>\(x=\sqrt[5]{x}\)

<=>\(x^5=x\) 

<=>x(x^4-1)=0

<=>\(\orbr{\begin{cases}x=0\\x^4=1\end{cases}}\)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: