Giúp tôi giải toán


Nghiem Thi Mai Phuong 11 giờ trước (22:08)
Báo cáo sai phạm

a,    \(\sqrt{5+\sqrt{x-1}}\)=6-x

=>bình phương lên => trục \(\sqrt{x-1}\)với x-6 => có nhân tử chung

c,    đat \(\sqrt{x^2+7x+7}\)=a => pt 3a2+2a-5=0 => giờ thì đơn giản rồi

b, mk k bít lm

phan tuấn anh 12/09/2016 lúc 17:14
Báo cáo sai phạm

bài này dùng bdt nhé bạn

vế bên phải >=2 vế bên trái <=2 nên cả 2 vế =2 

==> x^2-16x+66=2 <=> (x-8)^2=0 ==> x=8

Nguen Thang Hoang Hôm qua lúc 09:48
Báo cáo sai phạm

X=8 ai thích thì k hộ!

Thắng Nguyễn CTV 14/07/2017 lúc 15:25
Báo cáo sai phạm

\(x^2-x-1000\sqrt{8000x+1}=1000\)

\(\Leftrightarrow\left(x^2-x-4002000\right)-\left(1000\sqrt{8000x+1}-4001000\right)=0\)

\(\Leftrightarrow\left(x-2001\right)\left(x+2000\right)-\frac{1000\left(8000x+1-4001^2\right)}{1000\sqrt{8000x+1}+4001000}=0\)

\(\Leftrightarrow\left(x-2001\right)\left(x+2000\right)-\frac{1000\cdot8000\left(x-2001\right)}{1000\sqrt{8000x+1}+4001000}=0\)

\(\Leftrightarrow\left(x-2001\right)\left(\left(x+2000\right)-\frac{1000\cdot8000}{1000\sqrt{8000x+1}+4001000}\right)=0\)

\(\Rightarrow x=2001\)

Luật Lê Bá 14/07/2017 lúc 22:13
Báo cáo sai phạm

\(\)còn cái trong ngoặc thì sao

alibaba nguyễn 20/05/2017 lúc 10:05
Báo cáo sai phạm

Đặt \(\hept{\begin{cases}\sqrt[3]{x-1}=a\\\sqrt[3]{x-2}=b\end{cases}}\)

\(\Rightarrow a^3-b^3=1\left(1\right)\)

Ta có:

\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-1}\)

\(\Leftrightarrow\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{x-1+x-2+2}\)

\(\Leftrightarrow a+b=\sqrt[3]{a^3+b^3+2}\)

\(\Leftrightarrow3a^2b+3ab^2-2=0\left(2\right)\)

Từ (1) và (2) ta có

\(\Leftrightarrow3a^2b+3ab^2=2a^3-2b^3\)

Làm tiếp nhé. Nghiệm xấu quá hết muốn làm

Thắng Nguyễn CTV 13/07/2017 lúc 12:31
Báo cáo sai phạm

\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)

\(\Leftrightarrow x-1+4\sqrt{x+3}-8+2\sqrt{3-2x}-2=0\)

\(\Leftrightarrow x-1+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}+\frac{4\left(3-2x\right)-4}{2\sqrt{3-2x}+2}=0\)

\(\Leftrightarrow x-1+\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}+\frac{-8\left(x-1\right)}{2\sqrt{3-2x}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{16}{4\sqrt{x+3}+8}+\frac{-8}{2\sqrt{3-2x}+2}\right)=0\)

Thấy: \(1+\frac{16}{4\sqrt{x+3}+8}+\frac{-8}{2\sqrt{3-2x}+2}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

Nguyễn Thiều Công Thành 12/07/2017 lúc 23:02
Báo cáo sai phạm

\(\Leftrightarrow\frac{3\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\)

đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)

\(\Rightarrow\frac{ab+1}{a+b}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

thay vào là được

Pham Thi Thanh Thuy 12/07/2017 lúc 23:06
Báo cáo sai phạm

bạn có thể giải rõ hơn ko

Thắng Nguyễn CTV 11/07/2017 lúc 22:25
Báo cáo sai phạm

\(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)

\(pt\Leftrightarrow x^2-2x+1=\sqrt{2x^2-x}-1+\sqrt{1+3x-3x^2}-1\)

\(\Leftrightarrow\left(x-1\right)^2=\frac{2x^2-x-1}{\sqrt{2x^2-x}+1}+\frac{1+3x-3x^2-1}{\sqrt{1+3x-3x^2}+1}\)

\(\Leftrightarrow\left(x-1\right)^2-\frac{\left(x-1\right)\left(2x+1\right)}{\sqrt{2x^2-x}+1}-\frac{-3x\left(x-1\right)}{\sqrt{1+3x-3x^2}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)-\frac{2x+1}{\sqrt{2x^2-x}+1}-\frac{-3x}{\sqrt{1+3x-3x^2}+1}\right)=0\)

Dễ thấy: pt trong ngoặc vô nghiệm

\(\Rightarrow x-1=0\Rightarrow x=1\)

Nghiem Thi Mai Phuong 12 giờ trước (20:54)
Báo cáo sai phạm

bạn giải kỹ hơn đc k, tại sao trg ngoac lại vô nghiệm

Thắng Nguyễn CTV 11/07/2017 lúc 13:34
Báo cáo sai phạm

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)

Đk: tự làm :v

\(pt\Leftrightarrow\sqrt{x-1}-1+\sqrt{x^3+x^2+x+1}-\sqrt{15}=\sqrt{x^4-1}-\sqrt{15}\)

\(\Leftrightarrow\frac{x-1-1}{\sqrt{x-1}+1}+\frac{x^3+x^2+x+1-15}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}=\frac{x^4-1-15}{\sqrt{x^4-1}+\sqrt{15}}\)

\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^3+x^2+x-14}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{x^4-16}{\sqrt{x^4-1}+\sqrt{15}}=0\)

\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x-2\right)\left(x^2+3x+7\right)}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{x^2+3x+7}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x-1}+1}+\frac{x^2+3x+7}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}>0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

Pham Thi Thanh Thuy 11/07/2017 lúc 21:47
Báo cáo sai phạm

bn ơi có cách giải khác nhanh hơn ko bn giải cho mình cách đặt ẩn phụ vs

Nghiem Thi Mai Phuong 16/07 lúc 22:13
Báo cáo sai phạm

DKXD:-1<x<1

Dat  \(\sqrt{1-x^2}\)=a (a>0)      ;   x=b

=>a2+b2=1

Ta có phương trình \(\frac{1}{a^2}\)=\(\frac{3b}{a}\)-1

<=>a2-3ab+1=0

<=>2a2-3ab+b2=0(do a2+b2=1)

<=>(a-b)(2a-b)=0

<=>a=b hoặc 2a=b

Đến đây thì dễ rùi nhé

alibaba nguyễn CTV 04/07/2017 lúc 18:59
Báo cáo sai phạm

Đặt: \(\hept{\begin{cases}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{cases}}\)

Ta có:

\(x+2=3\sqrt{1-x^2}+\sqrt{1+x}\)

\(\Leftrightarrow2\left(1+x\right)+\left(1-x\right)-1=3\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{1+x}\)

\(\Leftrightarrow2a^2+b^2-3ab-a-1=0\)

 \(\Leftrightarrow\left(b+1-a\right)\left(b-1-2a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=a-1\\b=1+2a\end{cases}}\)

Tới đây thì đơn giản rồi nhé.

Thắng Nguyễn CTV 04/07/2017 lúc 18:25
Báo cáo sai phạm

mk tìm ra biểu thức để liên hợp r` nà, bn có can đảm thì xài tạm liên hợp :3

\(-\frac{25\sqrt{3}-48}{13}x-\frac{8\sqrt{27}-57}{13}\)

Thắng Nguyễn CTV 05/06/2017 lúc 06:37
Báo cáo sai phạm

b)\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)

Tự giải điều kiện nhé

\(pt\Leftrightarrow x^4+4x^3+6x^2+4x+1+\sqrt{x^2+2x+17}-4=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+17-16}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+1}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^4+\frac{\left(x+1\right)^2}{\sqrt{x^2+2x+17}+4}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left[\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}\right]=0\)

Dễ thấy: \(\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}>0\) (vô nghiệm)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Rightarrow x=-1\) (thỏa)

Vậy x=-1 là nghiệm của pt

Thắng Nguyễn CTV 05/06/2017 lúc 06:27
Báo cáo sai phạm

a)Đk:\(x\ge-1\)

\(pt\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{cases}}\) thì ta có: 

\(a^2+b^2=\left(x^2-x+1\right)+\left(x+1\right)=x^2+2\)

Ta được pt tương  đương \(5ab=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

*)Xét \(2a=b\Rightarrow2\sqrt{x+1}=\sqrt{x^2-x+1}\)

\(\Leftrightarrow4\left(x+1\right)=x^2-x+1\)

\(\Leftrightarrow-x^2+5x+3=0\Leftrightarrow x_{1,2}=-\frac{-5\pm\sqrt{37}}{2}\) (thỏa)

*)Xét \(b=2a\)\(\Rightarrow\sqrt{x+1}=2\sqrt{x^2-x+1}\)

\(\Rightarrow x+1=4\left(x^2-x+1\right)\)

\(\Rightarrow-4x^2+5x-3=0\Rightarrow-\frac{1}{16}\left(8x-5\right)^2-\frac{23}{16}< 0\) (loại)

Hoàng Thanh Tuấn 02/06/2017 lúc 22:28
Báo cáo sai phạm

\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

ĐK để phương trình có nghiệm \(3x-5\ge0\Rightarrow x\ge\frac{5}{3}\left(1\right)\)

nhẩm được \(x=2\)là nghiệm của phương trình trình ta sẽ thêm bớt vào hai vế để có thừa số chung là \(x-2\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)(trục căn thức ):

\(\frac{\left(\sqrt{x^2+12}-4\right)\left(\sqrt{x^2+12}+4\right)}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{\left(\sqrt{x^2+5}-3\right)\left(\sqrt{x^2+5}+3\right)}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)\(\Leftrightarrow\left(x-2\right)\left[\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right]=0\)

  1. TH1 :\(x-2=0\Leftrightarrow x=2\)
  2. \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\)dễ thấy \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\)với ĐK (1) Ta có : \(\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)\(\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3=0\left(VN\right)\)
Hoàng Phúc CTV 02/06/2017 lúc 20:14
Báo cáo sai phạm

Đặt căn (x+1/4)=y (y>=0) 

biến đổi 1 chút -> pt tương đương y^2-1/4+y+1/2=2 <=>y^2+y+1/4=2<=>(y+1/2)^2=(căn 2)^2 ........

Do Not Ask Why 29/05/2017 lúc 15:40
Báo cáo sai phạm

\(\left(x+1\right)\sqrt{2-x}+\left(x-1\right)\sqrt{3x-2}=2\)

Ta có :\(x\in\orbr{\frac{2}{3};\infty}\)

\(\left(x+1\right)\sqrt{2}-x+\left(x-1\right)\sqrt{3x-2}=x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}\)

\(x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}=2\)

\(x\sqrt{3x-2}-\sqrt{3x-2}+\sqrt{2x}-x+\sqrt{2}-2=0\)

\(\left(x-1\right)\sqrt{3x-2}+\left(\sqrt{2}-1\right)x+\sqrt{2}-2=0\)

Không tồn tại nghiệm số thực .

\(x\in\theta\)

alibaba nguyễn 29/05/2017 lúc 11:39
Báo cáo sai phạm

Điều kiện: \(\hept{\begin{cases}x\le2\\x\ge\frac{2}{3}\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3a^2+b^2=4\\a^2+b^2=2x\end{cases}}\) thế vào PT bao đầu thì ta có hệ

\(\Rightarrow\hept{\begin{cases}3a^2+b^2=4\\\left(a^2+b^2+2\right)a+\left(a^2+b^2-2\right)b=4\end{cases}}\)

\(\Rightarrow3a^2+b^2-\left(\left(a^2+b^2+2\right)a+\left(a^2+b^2-2\right)b\right)=0\)

\(\Leftrightarrow\left(a+b-2\right)\left(a^2+b^2+b-a\right)=0\)

Dễ thấy với \(\frac{2}{3}\le x\le2\) thì \(a^2+b^2+b-a>0\)

\(\Rightarrow a+b=2\)

\(\Rightarrow\sqrt{2-x}+\sqrt{3x-2}=2\)

(Bình phương 2 vế rút gọn ta được)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x-2\right)}=2-x\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x-2}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}=0\\\sqrt{2-x}=\sqrt{3x-2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\x=1\end{cases}}\)

Vũ Tri Hải 16/06/2017 lúc 16:15
Báo cáo sai phạm

a) đặt t = \(\sqrt{x+13}\) nên 7 = t2 - x - 6.

pt: x2 + 4x - t = t2 - x - 6 hay (x + 2)2 + (x + 2) + t - t2 = 0.

đặt a = x + 2.

pt: a2 - t2 + a - t = 0 hay (a - t)(a + t + 1) = 0.

* nếu a = t hay x + 2 = \(\sqrt{x+13}\) hay x2 + 3x - 9 = 0. (tự giải).

* nếu a + t + 1 = 0 hay \(\sqrt{x+13}\) = - x - 3 (ĐK -13\(\le\)x \(\le\)-3)

khi đó x2 + 5x - 2 = 0. (tự giải).

b) đặt t = \(\sqrt{x-3}\)(t >=0).  khi đó x = t2 + 3.

pt: t4 - t2 + 2t + 1 = 0.

* nếu t \(\ge\)1 thì t4 \(\ge\) t2 nên pt vô nghiệm.

* nếu 0 \(\le\) t \(\le\) 1 thì t 2\(\le\)t nên pt cũng vô nghiệm.

vậy pt vô nghiệm.

alibaba nguyễn 23/05/2017 lúc 16:01
Báo cáo sai phạm

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: