Giúp tôi giải toán


alibaba nguyễn 23/05 lúc 16:01

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Hoàng Anh Tú 20/05/2017 lúc 20:17

bạn chỉ cần bình phương lên là ok ngay mà......... lên bậc 4 r nhờ máy tính là xg

Hoàng Anh Tú 20/05/2017 lúc 20:15

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi

Cong chua anh trang 20/05/2017 lúc 18:44

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

alibaba nguyễn 20/05/2017 lúc 10:05

Đặt \(\hept{\begin{cases}\sqrt[3]{x-1}=a\\\sqrt[3]{x-2}=b\end{cases}}\)

\(\Rightarrow a^3-b^3=1\left(1\right)\)

Ta có:

\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-1}\)

\(\Leftrightarrow\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{x-1+x-2+2}\)

\(\Leftrightarrow a+b=\sqrt[3]{a^3+b^3+2}\)

\(\Leftrightarrow3a^2b+3ab^2-2=0\left(2\right)\)

Từ (1) và (2) ta có

\(\Leftrightarrow3a^2b+3ab^2=2a^3-2b^3\)

Làm tiếp nhé. Nghiệm xấu quá hết muốn làm

Sư tử đáng yêu 09/05/2017 lúc 11:11

(( 2x + 1 ) ^ 2+1)((1(y-1)^2=1

khó k....h...ó ko tả nổi

hi.............c bài k......h.........ó thế ư ư ư ư.........

alibaba nguyễn 09/05/2017 lúc 10:47

\(x^4+\sqrt{x^2+2017}=2017\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2017-\sqrt{x^2+2017}+\frac{1}{4}\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2017}-\frac{1}{2}\right)^2\)

\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2017}-\frac{1}{2}\)(vì \(\sqrt{x^2+2017}>\frac{1}{2}\))

\(\Leftrightarrow x^2-\sqrt{x^2+2017}+1=0\)

\(\Leftrightarrow\left(x^2+2017-\sqrt{x^2+2017}+\frac{1}{4}\right)=\frac{8065}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2+2017}-\frac{1}{2}\right)^2=\frac{8065}{4}\)

\(\Leftrightarrow\sqrt{x^2+2017}=\frac{\sqrt{8065}+1}{2}\)

\(\Leftrightarrow x^2=\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017}\\x=-\sqrt{\frac{\left(\sqrt{8065}+1\right)^2}{4}-2017}\end{cases}}\)

Lê Đức Hoàng Sơn 09/05/2017 lúc 21:51

Cảm ơn bạn nha

alibaba nguyễn 03/05/2017 lúc 15:43

\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

Đặt \(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)

Thì ta có:

\(a^2+2b-4=ab\)

\(\Leftrightarrow\left(2-a\right)\left(b-a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=b-2\end{cases}}\)

Với a = 2 

\(\Leftrightarrow\sqrt{x^2+2x+3}=2\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)

Với a = b - 2

\(\Leftrightarrow\sqrt{x^2+2x+3}=2x-1\)

Bình phương rồi giải tiếp sẽ ra.

alibaba nguyễn 21/04/2017 lúc 12:06

\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)

Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)

\(\Rightarrow x\le1-\sqrt{3}\)

Ta có:

\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))

\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)

(Kết hợp với điều kiện ta suy ra) 

\(\Leftrightarrow x=-1\)

tth 21/04/2017 lúc 20:36

x = 1 nha bạn

Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha

Đúng 100%

Đúng 100%

Luong The Vinh 23/04/2017 lúc 14:57
x = 1 nha
Lê Minh Đức 15/05/2017 lúc 21:01

 \(\left(1\right)\Leftrightarrow x\left(\sqrt{x^2-9}-3\right)+\left(x^2-18\right)\sqrt{2}=0\)

\(\Leftrightarrow\frac{x\left(x^2-9-9\right)}{\sqrt{x^2-9}+3}+\left(x^2-18\right)\sqrt{2}=0\)

\(\Leftrightarrow\left(x^2-18\right)\left(\frac{x}{\sqrt{x^2-9}+3}+\sqrt{2}\right)=0\)

\(\frac{x}{\sqrt{x^2-9}+3}=-\sqrt{2}\)

\(\Leftrightarrow x=-\sqrt{2x^2-18}-3\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x^2-18}=-x-3\sqrt{2}\)

\(\Rightarrow2x^2-18=x^2+6x\sqrt{2}+18\)

\(\Leftrightarrow x^2-6x\sqrt{2}+36=0\) (vô nghiệm)

Thử lại ta thấy chỉ có \(x=3\sqrt{2}\)  thỏa mãn.

Lê Minh Đức 15/05/2017 lúc 20:47

 \(x+\frac{3x}{\sqrt{x^2-9}}=6\sqrt{2}\Leftrightarrow\left(x-3\sqrt{2}\right)+\frac{3\left(x-\sqrt{2x^2-18}\right)}{\sqrt{x^2-9}}=0\) \(\left(ĐKXĐ:\orbr{\begin{cases}x>3\\x< -3\end{cases}}\right)\)

\(\Leftrightarrow\left(x-3\sqrt{2}\right)-\frac{3\left(2x^2-18-x^2\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}=0\)

\(\Leftrightarrow\left(x-3\sqrt{2}\right)-\frac{3\left(x-3\sqrt{2}\right)\left(x+3\sqrt{2}\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}=0\)

\(\Leftrightarrow\left(x-3\sqrt{2}\right)\left(1-\frac{3\left(x+3\sqrt{2}\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\sqrt{2}\\1-\frac{3x+9\sqrt{2}}{x\sqrt{x^2-9}+\left(x^2-9\right)\sqrt{2}}=0\end{cases}\left(\text{1}\right)}\)

\(\left(1\right)\Leftrightarrow3x+9\sqrt{2}=x\sqrt{x^2-9}+x^2\sqrt{2}-9\sqrt{2}\)

\(\Leftrightarrow x\sqrt{x^2-9}+x^2\sqrt{2}-3x-18\sqrt{2}=0\)

Làm sao giải được bây giờ?

Lê Minh Đức 14/05/2017 lúc 09:34

Phương trình tương đương \(x\sqrt{x^2-9}+3x=6\sqrt{2x^2-18}\)

\(\Leftrightarrow\left(\sqrt{x^2-9}-\sqrt{2}x+3\right)\left(\sqrt{2x^2-18}+x+3\sqrt{2}\right)=0\)

alibaba nguyễn 11/04/2017 lúc 22:25

\(\sqrt{1-2x}+\sqrt{1+2x}\ge2-x^2\)

Điều kiện: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

Với điều kiện này thì cả 2 vế đều dương. Bình phương 2 vế ta được.

\(\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2\ge\left(2-x^2\right)^2\)

\(\Leftrightarrow2\sqrt{\left(1-2x\right)\left(1+2x\right)}\ge x^4-4x^2+2\)

\(\Leftrightarrow\left(2\sqrt{\left(1-2x\right)\left(1+2x\right)}\right)^2\ge\left(x^4-4x+2\right)^2\)

 \(\Leftrightarrow x^8-8x^6+20x^4\le0\)

\(\Leftrightarrow x^4\left(x^4-8x^2+20\right)\le0\)

Dễ thấy x4 - 8x2 + 20 > 0

\(\Rightarrow x^4\le0\)

\(\Rightarrow x=0\)

Vậy nghiệm của bất phương trình là: \(x=0\) 

Chu Bá Đạt 11/04/2017 lúc 17:43

Xin lỗi nhé bổ xung thêm ĐKXĐ nữa

Chu Bá Đạt 11/04/2017 lúc 17:41

Ta có \(\left(2-x^2\right)^2< =\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2< =2\left(\sqrt{1-2x}^2+\sqrt{1+2x}^2\right)=4\)

=>  \(2-x^2< =2\)

Luôn đúng với mọi x

Thắng Nguyễn CTV 27/03/2017 lúc 19:08

cách khác đơn giản hơn nhiều 

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

Xét Ư(1)={1;-1}={....}

Dễ nhé, tự làm nốt

Thắng Nguyễn CTV 27/03/2017 lúc 19:03

Đk: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)

Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)

\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)

Dễ  thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)

\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)

Hoàng Thị Thu Huyền Quản lý 22/11/2016 lúc 10:51

ĐK: \(\hept{\begin{cases}x\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\le1\end{cases}\Rightarrow0\le x\le1.}\)

\(pt\Leftrightarrow2x\sqrt{x}+\sqrt{x\left(1-x\right)}\left(\sqrt{x}+\sqrt{1-x}\right)=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\left(1-x\right)\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow2x\sqrt{x}+x\sqrt{1-x}+\sqrt{x}-x\sqrt{x}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow x\sqrt{x}+x\sqrt{1-x}-\sqrt{1-x}=0\)

\(\Leftrightarrow x\sqrt{x}+\left(x-1\right)\sqrt{1-x}=0\)

Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\Rightarrow\hept{\begin{cases}a^2+b^2=1\\a^3-b^3=0\end{cases}}\)

\(\Rightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=0\Rightarrow\left(a-b\right)\left(1+ab\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-b=0\\ab=-1\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{1-x}\\\sqrt{x\left(1-x\right)}=-1\end{cases}\Rightarrow}}\) \(x=\frac{1}{2}\left(tm\right)\)

Vậy \(x=\frac{1}{2}.\)

Nguyễn Khắc Việt Hoàng 24/11/2016 lúc 18:55

x=1/2 do nha

alibaba nguyễn 13/12/2016 lúc 09:21

Điều kiện: \(\hept{\begin{cases}x\ne0\\2-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\-\sqrt{2}< x< \sqrt{2}\end{cases}}}\)

Ta có

\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)

\(\Leftrightarrow\frac{1}{\sqrt{2-x^2}}=2-\frac{1}{x}\)(x < 0 hoặc \(x\ge0,5\))

\(\Leftrightarrow\frac{1}{2-x^2}=4-\frac{4}{x}+\frac{1}{x^2}\)

\(\Leftrightarrow2x^4-2x^3-3x^2+4x-1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x^2+2x-1\right)=0\)

Với \(x-1=0\Leftrightarrow x=1\)

Với \(2x^2+2x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(l\right)\\x=-\frac{\sqrt{3}}{2}-\frac{1}{2}\end{cases}}\)

Phạm Việt Anh 13/12/2016 lúc 12:44

Khó quá

alibaba nguyễn 12/12/2016 lúc 23:03

Điều kiện bạn tự làm nhé

\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)

\(\Leftrightarrow\frac{1}{\sqrt{2-x^2}}=2-\frac{1}{x}\left(x\ge\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{1}{2-x^2}=4-\frac{4}{x}+\frac{1}{x^2}\)

\(\Leftrightarrow4x^4-4x^3-6x^2+8x-2=0\)

 \(\Leftrightarrow2x^4-2x^3-3x^2+4x-1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(2x+2x-1\right)=0\)

Tới đây thì đơn giản rồi bạn làm tiếp nhé

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: