Giúp tôi giải toán


Nguyễn Trần Thành An 17/09 lúc 20:51
Báo cáo sai phạm

<=> \(x^2-5x+8=2\sqrt{x-2}\left(đk\right):xkhác4\)

<=> \(x^2-5x+8=2x-4\)

<=> \(x^2-7x+12=0\)

Giải pt ta có : x1 = 4 (loại )

                    x2 = 3 (nhận )

Vậy : x =3

alibaba nguyễn CTV 18/09 lúc 13:24
Báo cáo sai phạm

Điều kiện: 4

\(x\ge\frac{1}{2}\)

Ta có: 

\(x\left(\sqrt{2x-1}-3\right)=\frac{2\left(2x^2-7x-15\right)}{x^2-6x+13}\)

\(\Leftrightarrow x.\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=\frac{2\left(x-5\right)\left(2x+3\right)}{x^2-6x+13}\)

\(\Leftrightarrow2\left(x-5\right)\left(\frac{x}{\sqrt{2x-1}+3}-\frac{2x+3}{x^2-6x+13}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\frac{x}{\sqrt{2x-1}+3}-\frac{2x+3}{x^2-6x+13}\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\frac{\left(x-3\right)+3}{\sqrt{2x-1}+3}-\frac{\left(2x-1\right)+4}{\left(x-3\right)^2+4}=0\)

Đặt \(\hept{\begin{cases}\left(x-3\right)=a\\\sqrt{2x-1}=b\ge0\end{cases}}\)

\(\Rightarrow\frac{a+3}{b+3}-\frac{b^2+4}{a^2+4}=0\)

Tới đây thì đơn giản rồi nhé

Đinh Đức Hùng CTV 12/09/2017 lúc 15:43
Báo cáo sai phạm

ĐK : \(x\ge0\)

Áp dụng bđt cauchy ta có :

\(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}\ge2\sqrt{\sqrt{x+8}.\frac{9x}{\sqrt{x+8}}}=2.3\sqrt{x}=6\sqrt{x}\)

\(\Rightarrow VT=\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}\ge6\sqrt{x}-6\sqrt{x}=0=VP\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+8}=\frac{9x}{\sqrt{x+8}}\Leftrightarrow\sqrt{x+8}^2=9x\Leftrightarrow x+8=9x\Rightarrow x=1\)(TM)

Vậy nghiệm PT là S = {1}

Le Nhat Phuong 12/09/2017 lúc 15:12
Báo cáo sai phạm

Anh/chị tham khảo ở đây nhé:

 (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> (4x - 1)²(x² + 1) = [ 2(x² + 1) + 2x - 1 ]² 
<=> (16x² - 8x + 1)(x² + 1) = 4(x² + 1)² + 4x² + 1 + 8x(x² + 1) - 4(x² + 1) - 4x 
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4(x^4 + 2x² + 1) + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x 
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4x^4 + 8x² + 4 + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x 
<=> 16x^4 - 8x^3 + 17x² - 8x + 1 = 4x^4 + 8x^3 + 8x² + 4x + 1 
<=> 12x^4 - 16x^3 + 9x² - 12x = 0 
<=> x(12x^3 - 16x² + 9x - 12) = 0 
<=> x(12x^3 + 9x - 16x² - 12) = 0 
<=> x[ 3x(4x² + 3) - 4(4x² + 3) = 0 
<=> x(3x - 4)(4x² + 3) = 0 

<=> x = 0 
<=> 3x - 4 = 0 
<=> 4x² + 3 = 0 

<=> x = 0 
<=> x = 4/3 
<=> x² = -3/4 --> Không có nghiệm vì x² ≥ 0 với mọi x 

Thế x = 0 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> -1√1 = 2 - 1 
<=> -1 = 1 ( Vô lý loại ) 

Thế x = 4/3 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1 
<=> 13/3√25/9 = 2.25/9 + 2.4/3 - 1 
<=> 65/9 = 65/9 ( đúng ) 

Nghiệm là x = 4/3 

vu 11/09/2017 lúc 21:39
Báo cáo sai phạm

hiểu rồi 

vu 11/09/2017 lúc 21:38
Báo cáo sai phạm

nhưng vì sao có a2-b=2010

vũ tiền châu 11/09/2017 lúc 21:03
Báo cáo sai phạm

a) nhé ta đặt \(\sqrt{x^2+2010}=a;x^2=b\)

từ phương rình => \(b^2+a=2010\)

và \(a^2-b=2010\)

nên ta có hệ phương trình sau 

\(\hept{\begin{cases}b^2+a=2010\\a^2-b=2010\end{cases}}\)

trừ hai vếcủa heẹ phương trình ta có 

\(a^2-b^2-b-a=0\Leftrightarrow\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)

đến đay thì dễ rồi nhé 

Thắng Nguyễn CTV 07/09/2017 lúc 19:05
Báo cáo sai phạm

\(2x+\sqrt{x+\sqrt{x-\frac{1}{4}}}=2\)

ĐK:\(x\ge\frac{1}{4}\)

\(pt\Leftrightarrow2x+\sqrt{x-\frac{1}{4}+\sqrt{x-\frac{1}{4}}+\frac{1}{4}}=2\)

\(\Leftrightarrow2x+\sqrt{\left(\sqrt{x-\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow2x+\sqrt{x-\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{3}{2}-2x\)

\(\Leftrightarrow x-\frac{1}{4}=4x^2-6x+\frac{9}{4}\)

\(\Leftrightarrow-4x^2+7x-\frac{5}{2}=0\)

\(\Leftrightarrow-\frac{1}{2}\left(2x-1\right)\left(4x-5\right)=0\)

\(\Rightarrow x=\frac{1}{2}\) (thỏa)

alibaba nguyễn CTV 07/09/2017 lúc 11:24
Báo cáo sai phạm

2/ \(\sqrt{4x^2-1}+\sqrt{4x-1}=1\)

Điều kiện: \(\hept{\begin{cases}4x^2-1\ge0\\4x-1\ge0\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

Ta có: 

\(VT=\sqrt{4x^2-1}+\sqrt{4x-1}\)

\(\ge\sqrt{4.\left(\frac{1}{2}\right)^2-1}+\sqrt{4.\frac{1}{2}-1}=0+1=1=VP\)

Dấu = xảy ra khi \(x=\frac{1}{2}\)

alibaba nguyễn CTV 07/09/2017 lúc 11:15
Báo cáo sai phạm

1/ \(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)

Đặt \(x^2=a\ge0\) thì ta có:

\(\sqrt{5-a^3}=\sqrt[3]{3a^2-2}+1\)

\(\Leftrightarrow\left(\sqrt[3]{3a^2-2}-1\right)+\left(2-\sqrt{5-a^3}\right)=0\)

\(\Leftrightarrow\frac{3a^2-3}{\sqrt[3]{\left(3a^2-2\right)^2}+\sqrt[3]{\left(3a^2-2\right)}+1}+\frac{a^3-1}{2+\sqrt{5-a^3}}=0\)

\(\Leftrightarrow\left(a-1\right)\left(\frac{3\left(a+1\right)}{\sqrt[3]{\left(3a^2-2\right)^2}+\sqrt[3]{\left(3a^2-2\right)}+1}+\frac{\left(a^2+a+1\right)}{2+\sqrt{5-a^3}}\right)=0\)

\(\Leftrightarrow a-1=0\)

\(\Rightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Nguyễn Thiều Công Thành 07/09/2017 lúc 16:02
Báo cáo sai phạm

\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)

đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)

\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)

<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2

<=>b2-2abc+a2c2=0

<=>(b-ac)2=0

<=>b=ac

đến đây thì dễ rồi

Nguyễn Thiều Công Thành 06/09/2017 lúc 15:56
Báo cáo sai phạm

bình phương lên

Le Nhat Phuong 06/09/2017 lúc 15:14
Báo cáo sai phạm

\(2"1-x"\sqrt{x^2+2x-1}=x^2-2x-1"1"\)

\(\Rightarrow DKXD\)

\(\Leftrightarrow4"1-x"^2"x^2+2x-1"="x^2-2x-1"^2\)

\(\Leftrightarrow3x^4+4x^3-18x^2+12x-5=0\)

\(\Leftrightarrow"x^2+2x-5""3x^2-2x+1"=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+2x-5=0\Rightarrow x=-1\pm\sqrt{6}\\3x^2-2x+1=0"false"\end{cases}}\)

P/s: Bn thay ngoặc kép thành ngoặc đơn nha

Trần Hữu Ngọc Minh 06/09/2017 lúc 17:18
Báo cáo sai phạm

Bình phương lên ra bậc 4 ko tối ưu,nên mình ko làm theo cách này,dù sao cũng cám ơn bạn

Phan Văn Hiếu 04/09/2017 lúc 21:16
Báo cáo sai phạm

\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)

\(\frac{x^2\left(x^2+2002\right)+x^4\sqrt{x^2+2002}}{2001}=2002\)

\(x^2\sqrt{x^2+2002}\left(\sqrt{x^2+2002}+x^2\right)=2002.2001\)

đặt x^2+2002=a

a-2002=x^2

pt \(\left(a-2002\right)\sqrt{a}\left(\sqrt{a}+a-2002\right)=2002.2001\)

Tuyển Trần Thị 03/09/2017 lúc 08:24
Báo cáo sai phạm

đề sai rùi đe dung như này vì mk đã làm rồi

\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}\)\(+\frac{1}{\sqrt{1-2x}}=\frac{4\sqrt{10}}{5}\)

dk \(-\frac{1}{2}< x< \frac{1}{2}\)

ap dung bdt \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)

\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}\)

tiep tuc ap dung bdt \(a+b< =2\sqrt{a^2+b^2}\) 

\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}>=\frac{4}{\sqrt{2\left(2x+1+1-2x\right)}}=2\)

lai co \(\frac{-1}{2}< x< \frac{1}{2}\Rightarrow\frac{1}{\sqrt{x+1}}>\frac{1}{\sqrt{\frac{1}{2}+1}}=\frac{\sqrt{6}}{3}\)

suy ra \(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>2+\frac{\sqrt{6}}{3}>\frac{4\sqrt{10}}{5}\)

pt vo no

Nguyễn Quốc Gia Huy 01/09/2017 lúc 20:41
Báo cáo sai phạm

\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)

\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)

\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)

\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)

alibaba nguyễn CTV 01/09/2017 lúc 09:42
Báo cáo sai phạm

Trước tiên ta chứng minh:

\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)

Với \(x\ge0\)thì bất đẳng thức đúng.

Với \(x< 0\)

\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng

Quay lại bài toán ta có:

\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)

\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)

\(\Rightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.

Rau 01/09/2017 lúc 08:51
Báo cáo sai phạm

\(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{3-x}=b\end{cases}\left(a,b\ge0\right)< =>\hept{\begin{cases}a^2+b^2=5\\x=a^2-2\end{cases}và.pt< =>}5\left(a^2-2+ab\right)=11a-2b.}\\ \\ Vậy-ta-có-hệ:\hept{\begin{cases}b=\frac{-5\left(a^2-2\right)+11a}{5a+2}\\b^2+a^2=5\end{cases}.}\)
\(< =>\left(a-2\right)\left(a+1\right)\left(5a^2-4a-4\right)=0\\ .\)
P/s: x=a^2-2 là xong :)))))

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: