Giúp tôi giải toán


NGUYỄN THẾ HIỆP Hôm qua lúc 18:04

pt <=> \(\left(3x+1+x-7\right)\left(\left(3x+1\right)^2+\left(x-7\right)^2\right)=\left(4x-6\right)^3\)

\(\Leftrightarrow\left(4x-6\right)\left(9x^2+6x+1+x^2-14x+49-\left(4x-6\right)^2\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(10x^2-8x+50-16x^2+48x-36\right)=0\)

\(\orbr{\begin{cases}2x-3=0\\-6x^2+40x+14=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\-3x^2+20x+7=0\left(\cdot\right)\end{cases}}\)

pt(*) <=> (3x-1)(x+7)=0 <=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-7\end{cases}}\)

Vậy x=...

Ác Mộng 13/06/2015 lúc 16:14

a)x2+y2-4x+4=0

<=>(x-2)2+y2=0

Do \(\left(x-2\right)^2\ge0;y^2\ge0\)

=>(x-2)2=0 và y2=0

<=>x=2 và y=0

b)2x2+y2-2xy+2x-4y+5=0

<=>(x2-2xy+y2-4y+4x+4)+(x2-2x+1)=0

<=>(x-y+2)2+(x-1)2=0

Do \(\left(x-y+2\right)^2\ge0;\left(x-1\right)^2\ge0\)

=>(x-y+2)2=0 và (x-1)2=0

<=>x=1 và y=3

Mr Lazy 10/07/2015 lúc 13:21

\(x^4+2x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow x^2\left(x+1\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\text{ (do }x^2+1>0\text{)}\)

\(\Leftrightarrow x=-1\)

thang Tran 10/07/2015 lúc 13:22

Giải rồi thây không hiểu chõ nào 

ĐÔ RÊ MON 21/07/2015 lúc 15:54

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\ge1\)thì 

\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

=>\(1\le\frac{3}{z^2}\)

\(\Leftrightarrow z^2\le3\)

nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)

suy ra 3 số đó là 1;2;3

LxP nGuyỄn hÒAnG vŨ 10/08/2015 lúc 21:53

Ta có a.b.c = a+b+c 

Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt. 

Tìm các số nguyên dương: 

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 
______________________________________________
li-kecho mk nhé bn Hoàng Khánh Linh

luu thi thao ly 10/08/2015 lúc 21:55

LxP nGuyỄn hÒAnG vŨ làm bài nào cũng có dấu gạch dưới rồi đến câu **** cho mk nhé bn

phuongthainhatan 11/02/2017 lúc 22:40

đặt y=x+2, rút gọn ta có

           \(2y^4\)+   \(12y^2\)+  \(2=82\)

<=>   \(y^4+6y^2-40=0\)

đặt   \(y^2=z>0\)ta có    \(z^2+6z-40=0\)suy ra  \(\left(z+3\right)^2-49=0\)

<=>     z+3=7(để z>0) <=> z=4

Vậy phương trình có tập nghiệm là.......(bạn tự tính nốt nhé)

Lê Thế Tài 10/02/2017 lúc 21:31

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Mr Lazy 09/08/2015 lúc 16:20

ĐK: \(3x^2-5x+2\ne0\Leftrightarrow x\ne1;\text{ }\frac{2}{3}\)

\(x=0\text{ thì pt trở thành }0=6\text{ (vô lí)}\)

\(\text{Xét }x\ne0\), chia cả tử và mẫu 2 phân số cho x, ta có:

\(pt\Leftrightarrow\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt \(3x+\frac{2}{x}=t\)

Pt trở thành \(\frac{2}{t-5}+\frac{13}{t+1}=6\)

Quy đồng, khử mẫu được pt bậc 2 ẩn t -> giải ra t -> thay vào giải ra x.

b/ĐK: \(x\ne0;-1\)

Đặt \(t=x+\frac{1}{2}\)

\(pt\text{ trở thành: }\frac{1}{\left(t-\frac{1}{2}\right)^2}+\frac{1}{\left(t+\frac{1}{2}\right)^2}=15\)\(\Leftrightarrow\frac{15\left[\left(t+\frac{1}{2}\right)\left(t-\frac{1}{2}\right)\right]^2-\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2}{\left(t-\frac{1}{2}\right)^2\left(t+\frac{1}{2}\right)^2}=0\)

\(\Leftrightarrow15\left(t^2-\frac{1}{4}\right)^2-2t^2-\frac{1}{2}=0\)

\(\Leftrightarrow240t^4-152t^2+7=0\) 

Đây là phương trình trùng phương bậc 2 ẩn t, đã có cách giải.

NGUYỄN THẾ HIỆP 09/02/2017 lúc 18:28

ĐKXĐ: x\(x\ne\)1,-1

a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)

<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)

Đặt: t=\(\frac{2x^2}{x^2-1}\)

Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)

Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)

Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)

Vậy nghiệm là ...

DARK QUEEN Nữ Hoàng Bóng Đêm 09/02/2017 lúc 18:07

4x^2 + 2y^2 + 2z^2 - 4xy - 2yz + 2y - 8z + 10 = (4x^2 - 4xy + y^2) + (z^2 - 6z + 9) +(y^2 + z^2 +1 -2yz -2z +2y) = (2x-y)^2 + (z-3)^2 + (y-z+1)^2 < hoặc = 0

nanami 15/02/2017 lúc 20:00

vô nghiệm bằng 5/6

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: